RESEARCH ON MINIMUM OPTIMAL RATIO OF WIND AND PHOTOVOLTAIC FLUCTUATIONS IN NORTHWEST POWER GRID

Sun Pei, Wang Ying, Li Yutian, Zhang Yujin, Tao Jiaqi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 235-244.

PDF(1986 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1986 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 235-244. DOI: 10.19912/j.0254-0096.tynxb.2023-1608

RESEARCH ON MINIMUM OPTIMAL RATIO OF WIND AND PHOTOVOLTAIC FLUCTUATIONS IN NORTHWEST POWER GRID

  • Sun Pei1, Wang Ying2, Li Yutian1, Zhang Yujin1, Tao Jiaqi1
Author information +
History +

Abstract

The index system is put forward to measure the fluctuation of wind and photovoltaic combined power generation system, and the hourly, daily and monthly fluctuation coefficients are established based on the anomaly class, and the characteristics of the wind and photovoltaic resources in northwest China are analyzed. Based on resource complementarity and load effect, a mathematical model of minimum ratio of wind and photovoltaic fluctuation is established. Finally, the minimum ratio of wind and photovoltaic fluctuation of the northwest power grid in 2030 is calculated. The research provides some reference for the development and policy making of new energy in northwest China.

Key words

wind power / solar energy / optimization design / complementarity / fluctuation / northwest power grid

Cite this article

Download Citations
Sun Pei, Wang Ying, Li Yutian, Zhang Yujin, Tao Jiaqi. RESEARCH ON MINIMUM OPTIMAL RATIO OF WIND AND PHOTOVOLTAIC FLUCTUATIONS IN NORTHWEST POWER GRID[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 235-244 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1608

References

[1] PAN Y L, DONG F.Dynamic evolution and driving factors of new energy development: fresh evidence from China[J]. Technological forecasting and social change, 2022, 176: 121475.
[2] WANG W, YU T, HUANG Y P, et al.The situation and suggestions of the new energy power system under the background of carbon reduction in China[J]. Energy reports, 2021, 7: 1477-1484.
[3] 秦博宇, 周星月, 丁涛, 等. 全球碳市场发展现状综述及中国碳市场建设展望[J]. 电力系统自动化, 2022, 46(21): 186-199.
QIN B Y, ZHOU X Y, DING T, et al.Review on development of global carbon market and prospect of China’s carbon market construction[J]. Automation of electric power systems, 2022, 46(21): 186-199.
[4] 秦博宇, 李恒毅, 张哲, 等. 地下空间支撑下的电力能源系统: 构想、挑战与展望[J]. 中国电机工程学报, 2022, 42(4): 1321-1331.
QIN B Y, LI H Y, ZHANG Z, et al.Underground space supported electric energy systems: conceptions, challenges, and prospects[J]. Proceedings of the CSEE, 2022, 42(4): 1321-1331.
[5] 秦博宇, 王宏振, 王召健, 等. 地下空间支撑下的城市轨道交通和能源系统融合发展研究[J]. 中国工程科学, 2023, 25(1): 45-59.
QIN B Y, WANG H Z, WANG Z J, et al.Integrated development of urban rail transit and energy systems supported by underground space[J]. Strategic study of CAE, 2023, 25(1): 45-59.
[6] 胥冬洋. 考虑频率稳定的新能源电力系统分布式调相机选址定容策略研究[D]. 吉林: 东北电力大学, 2023.
XU D Y.Research on location and capacity determination strategy of distributed condenser of new energy power system considering frequency stability[D]. Jilin: Northeast Dianli University, 2023.
[7] 崔杨,于世鹏,王学斌,等.考虑系统调峰需求与光热电站收益平衡的储热容量优化配置[J]. 中国电机工程学报,2023, 43(22): 8745-8757.
CUI Y, YU S P, WANG X B, et al.Optimal configuration of heat storage capacity considering the balance between system peak shaving demand and concentrating solar power plant revenue[J]. Proceedings of the CSEE, 2023, 43(22): 8745-8757.
[8] 乔延辉, 韩爽, 许彦平, 等. 基于天气分型的风光出力互补性分析方法[J]. 电力系统自动化, 2021, 45(2): 82-88.
QIAO Y H, HAN S, XU Y P, et al.Analysis method for complementarity between wind and photovoltaic power outputs based on weather classification[J]. Automation of electric power systems, 2021, 45(2): 82-88.
[9] 魏韡, 范越, 谢睿, 等. 平抑高比例新能源发电功率波动的风-光-储容量最优配比[J]. 电力建设, 2023, 44(3): 138-147.
WEI W, FAN Y, XIE R, et al.Optimal ratio of wind-solar-storage capacity for mitigating the power fluctuations in power system with high penetration of renewable energy power generation[J]. Electric power construction, 2023, 44(3): 138-147.
[10] 黄利祥, 张新燕, 梁帅, 等. 平抑风光功率波动的混合储能功率分配策略[J]. 科学技术与工程, 2023, 23(25): 10825-10834.
HUANG L X, ZHANG X Y, LIANG S, et al.Hybrid energy storage power distribution strategy for smoothing wind-photovoltaic power fluctuation[J]. Science technology and engineering, 2023, 23(25): 10825-10834.
[11] 王磊, 王昭, 冯斌, 等. 基于双层优化模型的风-光-储互补发电系统优化配置[J]. 太阳能学报, 2022, 43(5): 98-104.
WANG L, WANG Z, FENG B, et al.Optimal configuration of wind-photovoltaic-ess complementary power generation system based on bi-level optimization model[J]. Acta energiae solaris sinica, 2022, 43(5): 98-104.
[12] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
AN Y, ZHENG S Y, SU R, et al.Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta energiae solaris sinica, 2023, 44(12): 510-517.
[13] 吴瑾, 王智伟, 邢琳, 等. 基于随机规划的风光互补系统容量配比方法[J]. 分布式能源, 2021, 6(2): 40-46.
WU J, WANG Z W, XING L, et al.Capacity allocation method of wind-solar hybrid system based on stochastic programming theory[J]. Distributed energy, 2021, 6(2): 40-46.
[14] 孙沛, 范越, 孙骁强, 等. 电力系统新能源等效消纳能力及其工程应用[J]. 电工电能新技术, 2023, 42(8): 79-86.
SUN P, FAN Y, SUN X Q, et al.Equivalent renewable energy accommodating capability and its engineering application[J]. Advanced technology of electrical engineering and energy, 2023, 42(8): 79-86.
[15] 邵成成, 冯陈佳, 傅旭, 等. 多能源电力系统生产模拟: 现状与挑战[J]. 中国电机工程学报, 2021, 41(6): 2029-2040.
SHAO C C, FENG C J, FU X, et al.Multi energy power system production simulation: state of arts and challenges[J]. Proceedings of the CSEE, 2021, 41(6): 2029-2040.
[16] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[17] MONFORTI F, HULD T, BÓDIS K, et al. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach[J]. Renewable energy, 2014, 63: 576-586.
[18] 齐志远, 郭佳伟, 李晓炀. 基于联合概率分布的风光互补发电系统优化配置[J]. 太阳能学报, 2018, 39(1): 203-209.
QI Z Y, GUO J W, LI X Y.Optimal configuration for wind power and solar power hybrid systems based on joint probability distribution of wind speed with solar irradiance[J]. Acta energiae solaris sinica, 2018, 39(1): 203-209.
[19] ZHANG H X, CAO Y J, ZHANG Y, et al.Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied energy, 2018, 216: 172-182.
[20] 胡林献, 顾雅云, 姚友素. 并网型风光互补系统容量优化配置方法[J]. 电网与清洁能源, 2016, 32(3): 120-126.
HU L X, GU Y Y, YAO Y S.Optimal capacity configuration method for grid-connected wind-solar complementary power system[J]. Power system and clean energy, 2016, 32(3): 120-126.
[21] 姚天亮, 吴兴全, 李志伟, 等. 计及多约束条件的风光互补容量配比研究[J]. 电力系统保护与控制, 2017, 45(9): 126-132.
YAO T L, WU X Q, LI Z W, et al.Research on complementary capacity ratio of wind power and photovoltaic considering multiple constraints[J]. Power system protection and control, 2017, 45(9): 126-132.
[22] JEREZ S, TRIGO R M, SARSA A, et al.Spatio-temporal complementarity between solar and wind power in the Iberian peninsula[J]. Energy procedia, 2013(40): 48-57.
[23] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164.
YE L, QU X X, YAO Y X, et al.Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of electric power systems, 2018, 42(4): 158-164.
PDF(1986 KB)

Accesses

Citation

Detail

Sections
Recommended

/