OPTIMIZATION OF TEMPERATURE DESIGN PARAMETERS OF CASCADE HIGH-TEMPERATURE HEAT PUMP BASED ON THERMAL ECONOMIC ANALYSIS

Shi Guohua, Wang Ziang, Gao Yuqi, Zhao Yuetian, Liu Bo

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 218-225.

PDF(1652 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1652 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 218-225. DOI: 10.19912/j.0254-0096.tynxb.2023-1625

OPTIMIZATION OF TEMPERATURE DESIGN PARAMETERS OF CASCADE HIGH-TEMPERATURE HEAT PUMP BASED ON THERMAL ECONOMIC ANALYSIS

  • Shi Guohua, Wang Ziang, Gao Yuqi, Zhao Yuetian, Liu Bo
Author information +
History +

Abstract

Cascade heat pump is an effective technology for utilizing low-grade renewable energy. In order to improve the economy of the application of cascade heat pump in the printing and dyeing industry, a cascade high-temperature heat pump model suitable for industrial waste heat recovery and reuse was constructed based on the thermodynamic cycle analysis. Taking the heating load per unit total cost as the optimization objective, considering the thermal economic cost and system performance, the optimization design of the combined parameters of evaporation and condensation temperature was carried out through the mathematical analysis. Results show that for the optimal refrigerant combination of R152a/R245fa, the optimization of evaporation temperature can increase the heating load per unit total cost by about 14.5% at the condensation temperature of 370.41 K. Under the condition of evaporation temperature of 297.43 K, the optimization of condensation temperature can increase the heating load per unit total cost by about 24%, and the maximum heating load per unit total cost reaches 2.84 W/(yuan·a). In addition, the thermoeconomic objective is affected by the heating coefficient and the specific heating rate, and there exists optimal combination of the heating coefficient and the specific heating rate, which maximizes the unit cost heat load.

Key words

waste heat recovery / heat pump / thermoanalysis / cascade high-temperature heating / thermo-economical optimization / optimal temperature parameters

Cite this article

Download Citations
Shi Guohua, Wang Ziang, Gao Yuqi, Zhao Yuetian, Liu Bo. OPTIMIZATION OF TEMPERATURE DESIGN PARAMETERS OF CASCADE HIGH-TEMPERATURE HEAT PUMP BASED ON THERMAL ECONOMIC ANALYSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 218-225 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1625

References

[1] 赵军, 李扬, 李浩, 等. 中低温能源在中国[J]. 太阳能学报, 2022, 43(2): 250-260.
ZHAO J, LI Y, LI H, et al.Mid-/low-temperature energy in China[J]. Acta energiae solaris sinica, 2022, 43(2): 250-260.
[2] 王茹. “余热+光伏” 能源互联技术在油田联合站的应用[J]. 清洗世界, 2021, 37(12): 134-135.
WANG R.Application of “waste heat+photovoltaic” energy interconnection technology in oilfield joint station[J]. Cleaning world, 2021, 37(12): 134-135.
[3] 鲁军辉, 王随林, 唐进京, 等. 可再生能源与余热协同辅助碳捕集技术研究现状与展望[J]. 华电技术, 2021, 43(11): 97-109.
LU J H, WANG S L, TANG J J, et al.Review and prospects of carbon capture technology assisted by renewable energy, waste heat and combination of them[J]. Huadian technology, 2021, 43(11): 97-109.
[4] 靳行, 狄育慧, 郝振东. 印染废水余热回收分析[J]. 制冷与空调(四川), 2021, 35(6): 919-923.
JIN X, DI Y H, HAO Z D.Waste heat recovery of waste water from the printing and dyeing industry[J]. Refrigeration & air conditioning, 2021, 35(6): 919-923.
[5] LI F, HUANG J H, XIA Q, et al.Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants[J]. Separation and purification technology, 2018, 195: 83-91.
[6] 孙士恩, 田亚, 高新勇. 热泵与低真空耦合回收循环水余热的热力性能分析[J]. 太阳能学报, 2018, 39(5): 1309-1319.
SUN S E, TIAN Y, GAO X Y.Thermodynamic analysis on coupling system of heat-pump and low-vacuum with circulating water heat recovery[J]. Acta energiae solaris sinica, 2018, 39(5): 1309-1319.
[7] 李露露, 尹应德, 刘世杰, 等. 供暖水温对低温空气源热泵制热性能影响的实验研究[J]. 太阳能学报, 2023, 44(4): 377-383.
LI L L, YIN Y D, LIU S J, et al.Experimental study on effect of heating water temperature on heating performance of low-temperature air source heat pump[J]. Acta energiae solaris sinica, 2023, 44(4): 377-383.
[8] YERDESH Y, ABDULINA Z, ALIULY A, et al.Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates[J]. Renewable energy, 2020, 145: 1222-1234.
[9] CHAE J H, CHOI J M.Evaluation of the impacts of high stage refrigerant charge on cascade heat pump performance[J]. Renewable energy, 2015, 79: 66-71.
[10] 胡晓微, 李观铭, 董胜明, 等. 基于实验数据的复叠式高温热泵系统先进火用分析[J]. 热能动力工程, 2021, 36(11): 87-93.
HU X W, LI G M, DONG S M, et al.Advanced exergy analysis of cascade high-temperature heat pump system based on experimental data[J]. Journal of engineering for thermal energy and power, 2021, 36(11): 87-93.
[11] KIM J, LEE J, CHOI H, et al.Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems[J]. Journal of mechanical science and technology, 2015, 29(12): 5447-5458.
[12] 吴曦, 徐士鸣, 刘嘉威, 等. 适用于复叠式中高温热泵的混合制冷剂分析[J]. 制冷学报, 2018, 39(5): 53-58.
WU X, XU S M, LIU J W, et al.Analysis of available blend refrigerants for medium-high temperature cascade heat pump[J]. Journal of refrigeration, 2018, 39(5): 53-58.
[13] 罗威, 江斌, 潘浩, 等. R134a/CO2复叠式热泵系统热力学分析及研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(8): 1032-1035.
LUO W, JIANG B, PAN H, et al.Thermodynamic analysis and research on R134a/CO2 cascade heat pump system[J]. Journal of Hefei University of Technology (natural science), 2020, 43(8): 1032-1035.
[14] 张悦, 秦林婷, 王建强. 复叠式热泵系统的能耗分析[J]. 节能, 2021, 40(10): 65-68.
ZHANG Y, QIN L T, WANG J Q.Energy consumption analysis of cascade heat pump system[J]. Energy conservation, 2021, 40(10): 65-68.
[15] REZAYAN O, BEHBAHANINIA A.Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems[J]. Energy, 2011, 36(2): 888-895.
[16] WU Z X, WANG X Y, SHA L, et al.Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system[J]. Energy, 2021, 223: 120097.
[17] DONG S M, MENG X C, HU X W, et al.Investigation of cascade high temperature heat pump optimal design theory based on experiment supporting multi-objective optimization[J]. Energy conversion and management, 2022, 267: 115873.
[18] XU L Y.Thermodynamic analysis of stirling heat pump based on thermoeconomic optimization criteria[J]. MATEC web of conferences, 2016, 61: 01010.
[19] 陈光明, 陈国邦. 制冷与低温原理[M]. 北京: 机械工业出版社, 2000.
CHEN G M, CHEN G B.Principle of refrigeration and low temperature[M]. Beijing: China Machine Press, 2000.
[20] 赵瑞昌. 复叠式热泵系统性能的研究[D]. 天津: 天津商业大学, 2019.
ZHAO R C.Study on performance of cascade heat pump system[D]. Tianjin: Tianjin University of Commerce, 2019.
[21] 杨凤. 加过冷装置的R245fa中高温热泵系统循环性能研究[D]. 天津: 天津商业大学, 2021.
YANG F.Study on cycle performance of R245fa medium and high temperature heat pump system with supercooling device[D]. Tianjin: Tianjin University of Commerce, 2021.
[22] 张振兴. 复叠式热泵的理论分析和高温段的实验研究[D]. 杭州: 浙江工业大学, 2013.
ZHANG Z X.Theoretical analysis and experimental study of cascade heat pump in high temperature section[D]. Hangzhou: Zhejiang University of Technology, 2013.
[23] 吴青昊, 巫江虹. 复叠式空气源热泵热水器运行工况及其工质的选择[J]. 低温与特气, 2008, 26(3): 5-8.
WU Q H, WU J H.Selection of working conditions and refrigerant on cascade heat pump water heater[J]. Low temperature and specialty gases, 2008, 26(3): 5-8.
[24] 刘永忠, 冯霄. 复叠热泵冷冻干燥系统制冷剂的选择[J]. 华北电力大学学报, 2003, 30(5): 105-108.
LIU Y Z, FENG X.Selection of working fluids on a cascade heat pump cycle in application to freeze-drying plant[J]. Journal of North China Electric Power University, 2003, 30(5): 105-108.
[25] PARK H, KIM D H, KIM M S.Thermodynamic analysis of optimal intermediate temperatures in R134a-R410A cascade refrigeration systems and its experimental verification[J]. Applied thermal engineering, 2013, 54(1): 319-327.
PDF(1652 KB)

Accesses

Citation

Detail

Sections
Recommended

/