MULTI-OBJECTIVE FAST RANKING MODEL PREDICTIVE CONTROL CONSIDERING PARAMETER MISMATCHES OF VIENNA RECTIFIER

Luo Wei, Zhang Yuchao, Jiang Jiayan, Liu Yunlong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 209-217.

PDF(6200 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6200 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 209-217. DOI: 10.19912/j.0254-0096.tynxb.2023-1628

MULTI-OBJECTIVE FAST RANKING MODEL PREDICTIVE CONTROL CONSIDERING PARAMETER MISMATCHES OF VIENNA RECTIFIER

  • Luo Wei1, Zhang Yuchao1, Jiang Jiayan2, Liu Yunlong2
Author information +
History +

Abstract

In order to solve the problems of weight factors tuning,and poor system robustness caused by mismatching of model parameters in Vienna rectifier using traditional FCS-MPC, a multi-objective fast sorting model predictive control strategy was proposed,Firstly,the sorting results of different weight items are summed,and the minimum sorting and corresponding switching state are applied to the next control period. A multi-objective fast rank model predictive control (MOFR-MPC) is proposed,which effectively eliminate the weight factors in traditional FCS-MPC. Secondly,the effect of the inductance mismatch on the controller is analyzed,and an inductance observer is constructed based on the predicted and actual current values,and a model predictive control (CPM-MPC) taking into account parameter mismatch is proposed to improve the grid-connected current quality when the model parameters are mismatched. Finally,the simulation and experimental results show that compared with traditional FCS-MPC,CPM-MPC not only does not need to design weight factors,but also has better steady-state and dynamic performance when the model parameters are mismatched.

Key words

multi-objective optimization / model predictive control / robustness / Vienna rectifier / parameter mismatch

Cite this article

Download Citations
Luo Wei, Zhang Yuchao, Jiang Jiayan, Liu Yunlong. MULTI-OBJECTIVE FAST RANKING MODEL PREDICTIVE CONTROL CONSIDERING PARAMETER MISMATCHES OF VIENNA RECTIFIER[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 209-217 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1628

References

[1] LIU S G, JIANG J, CHENG G.Research on vector control strategy of three phase Vienna rectifier employed in EV charger[C]//2019 Chinese Control and Decision Conference(CCDC). Nanchang, China, 2019: 4914-4917.
[2] YALAVARTHI A, SINGH B.Sensorless SRM driven solar irrigation pump with grid-support using Vienna rectifier[C]//2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. Shillong, Meghalaya, India, 2021: 1-6.
[3] 陈亚爱, 李子漩, 周京华, 等. VIENNA整流器控制策略综述[J]. 电气传动, 2021, 51(9): 3-10.
CHEN Y A, LI Z X, ZHOU J H, et al.Summary of control strategies for VIENNA rectifier[J]. Electric drive, 2021, 51(9): 3-10.
[4] 岳益民, 刘芳, 姜卫东, 等. 电网电压不平衡条件下Vienna整流器控制及电流过零畸变抑制方法[J]. 中国电机工程学报, 2023, 43(16): 6395-6407.
YUE Y M, LIU F, JIANG W D, et al.The control and current over-zero distortion suppression method for Vienna rectifier under unbalanced grid voltage condition[J]. Proceedings of the CSEE, 2023, 43(16): 6395-6407.
[5] RODRIGUEZ J, KAZMIERKOWSKI M P, ESPINOZA J R, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE transactions on industrial informatics, 2013, 9(2): 1003-1016.
[6] VAZQUEZ S, SANCHEZ J A, CARRASCO J M, et al.A model-based direct power control for three-phase power converters[J]. IEEE transactions on industrial electronics, 2008, 55(4): 1647-1657.
[7] 柳志飞, 杜贵平, 杜发达. 有限集模型预测控制在电力电子系统中的研究现状和发展趋势[J]. 电工技术学报, 2017, 32(22): 58-69.
LIU Z F, DU G P, DU F D.Research status and development trend of finite control set model predictive control in power electronics[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 58-69.
[8] WEI Y, WEI Y J, QIAO J, et al.Hybrid model predictive control with multiple objectives for three-phase grid-connected inverter without weighting factors[C]//2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE). Jinan, China, 2021: 63-68.
[9] 杨旭, 李岚, 杨琦, 等. 电压不平衡下无权重系数FCS-MPC的DFIG控制[J]. 太阳能学报, 2022, 43(2): 389-393.
YANG X, LI L, YANG Q, et al.DFIG control based on without weighting factor FCS-MPC under unbalanced voltage[J]. Acta energiae solaris sinica, 2022, 43(2): 389-393.
[10] LEE K J, PARK B G, KIM R Y, et al.Robust predictive current controller based on a disturbance estimator in a three-phase grid-connected inverter[J]. IEEE transactions on power electronics, 2012, 27(1): 276-283.
[11] GUO X, REN H P, LI J.Robust model-predictive control for a compound active-clamp three-phase soft-switching PFC converter under unbalanced grid condition[J]. IEEE transactions on industrial electronics, 2018, 65(3): 2156-2166.
[12] 周湛清, 夏长亮, 陈炜, 等. 具有参数鲁棒性的永磁同步电机改进型预测转矩控制[J]. 电工技术学报, 2018, 33(5): 965-972.
ZHOU Z Q, XIA C L, CHEN W, et al.Modified predictive torque control for PMSM drives with parameter robustness[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 965-972.
[13] 肖蕙蕙, 苏新柱, 郭强, 等. 三相Vienna整流器无网压传感器预测电流控制策略[J]. 电工技术学报, 2021, 36(6): 1304-1312.
XIAO H H, SU X Z, GUO Q, et al.Predictive current control of three-phase Vienna rectifier without grid voltage sensors[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1304-1312.
[14] ARIF B, TARISCIOTTI L, ZANCHETTA P, et al.Grid parameter estimation using model predictive direct power control[J]. IEEE transactions on industry applications, 2015, 51(6): 4614-4622.
[15] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器的改进型有限集模型预测控制[J]. 太阳能学报, 2022, 43(8): 67-74.
HONG J F, ZHANG X, CAO R X, et al.Improved finite control set model predictive control of three-level grid-connected inverter[J]. Acta energiae solaris sinica, 2022, 43(8): 67-74.
PDF(6200 KB)

Accesses

Citation

Detail

Sections
Recommended

/