FLUCTUATION SUPPRESSION CONTROL STRATEGY FOR WIND AND SOLAR POWER GENERATION BASED ON ELECTRIC-METHANOL HYBRID ENERGY STORAGE SYSTEM

Li Wen, Bu Fanpeng, Zhang Kang, Zhang Sirui, Zhang Jing, Hou Chenglong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 193-199.

PDF(1950 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1950 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 193-199. DOI: 10.19912/j.0254-0096.tynxb.2023-1649

FLUCTUATION SUPPRESSION CONTROL STRATEGY FOR WIND AND SOLAR POWER GENERATION BASED ON ELECTRIC-METHANOL HYBRID ENERGY STORAGE SYSTEM

  • Li Wen1, Bu Fanpeng1, Zhang Kang2, Zhang Sirui1, Zhang Jing1, Hou Chenglong2
Author information +
History +

Abstract

To address the issues of power fluctuations and significant peak-to-valley differences caused by the integration of large-scale uncontrollable renewable energy sources such as wind and solar power into the grid, a hybrid energy storage system based on electric-methanol is proposed. This system combines electrochemical energy storage with methanol production via CO2 electrolysis, thereby enhancing the operational stability of the power system while simultaneously reducing greenhouse gas emissions through methanol production. Furthermore, in response to the low efficiency of CO2 electrolysis for methanol production caused by voltage fluctuations in the power system, a novel duty-cycling control strategy based on a methanol electrolyzer is introduced. This strategy optimizes the capacity configuration of the electric-methanol hybrid energy storage system to ensure that the power fluctuations of the power station can meet national regulations.

Key words

electric power systems / wind power / solar energy / power fluctuation stabilization / methanol electrolyzer / hybrid energy storage / coordination control strategy / capacity allocation

Cite this article

Download Citations
Li Wen, Bu Fanpeng, Zhang Kang, Zhang Sirui, Zhang Jing, Hou Chenglong. FLUCTUATION SUPPRESSION CONTROL STRATEGY FOR WIND AND SOLAR POWER GENERATION BASED ON ELECTRIC-METHANOL HYBRID ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 193-199 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1649

References

[1] SPERLING D.Beyond oil and gas: the methanol economy[J]. The energy journal, 2007, 28(1): 178-180.
[2] 李建林, 李光辉, 梁丹曦, 等. “双碳目标” 下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
LI J L, LI G H, LIANG D X, et al.Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(5): 1-9.
[3] 王一凡, 王辉, 李旭阳, 等. 电氢混合储能微电网容量配置优化的研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 18-36.
WANG Y F, WANG H, LI X Y, et al.Survey of capacity allocation of microgrid hybrid energy storage system based on hydrogen energy storage[J]. Journal of Guangxi Normal University (natural science edition), 2022, 40(6): 18-36.
[4] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[5] 李培强, 李雄, 蔡笋, 等. 风电场含退役动力电池的混合储能系统容量优化配置[J]. 太阳能学报, 2022, 43(5): 492-498.
LI P Q, LI X, CAI S, et al.Capacity optimization configuration of hybrid energy storage system with retired power batteries in wind farms[J]. Acta energiae solaris sinica, 2022, 43(5): 492-498.
[6] 代灵英, 苏永庆, 古铭岚, 等. C-Cu2O复合电极用于电化学还原CO2制甲醇[J]. 应用化工, 2022, 51(7): 1946-1949.
DAI L Y, SU Y Q, GU M L, et al.C-Cu2O composite electrode using for electrochemical reduction of CO2 to methanol[J]. Applied chemical industry, 2022, 51(7): 1946-1949.
[7] 胡华冲, 鄂彬, 陈善平, 等. 直接甲醇燃料电池离网供电应用研究[J]. 电源学报, 2024, 22(S1): 143-149.
HU H C, E B, CHEN S P, et al. Research on application of direct methanol fuel cell off-grid power supply[J]. Journal of power supply, 2024, 22(S1): 143-149.
[8] 袁铁江, 郭建华, 杨紫娟, 等. 平抑风电波动的电-氢混合储能容量优化配置[J]. 中国电机工程学报, 2024, 44(4): 1397-1406.
YUAN T J, GUO J H, YANG Z J, et al.Optimal allocation of power electric-hydrogen hybrid energy storage of stabilizing wind power fluctuation[J]. Proceedings of the CSEE, 2024, 44(4): 1397-1406.
[9] LIU Q, WANG K.Research on civil aviation universal service standard based on tessellation model and particle swarm optimization[J]. The international journal of advanced manufacturing technology, 2020, 106(7): 3381-3388.
[10] 杨紫娟, 田雪沁, 吴伟丽, 等. 考虑电解槽组合运行的风电-氢能-HCNG耦合网络容量优化配置[J]. 电力系统自动化, 2023, 47(12): 76-85.
YANG Z J, TIAN X Q, WU W L, et al.Optimal capacity configuration of wind-hydrogen-hcng coupled network considering combined electrolyzer operation[J]. Automation of electric power systems, 2023, 47(12): 76-85.
[11] 杨少帅, 罗萍萍. 带混合储能的光伏并网系统功率协调控制策略研究[J]. 现代电力, 2019, 36(1): 37-44.
YANG S S, LUO P P.Research on power coordination control strategy of photovoltaic grid-connected system with hybrid energy storage[J]. Modern electric power, 2019, 36(1): 37-44.
[12] 彭明月. 过渡金属铜和锡复合材料的制备及其电化学二氧化碳还原的研究[D]. 南昌: 南昌航空大学, 2018.
PENG M Y.Preparation of transition metal copper and tin composites and their electrochemical reduction of carbon dioxide[D]. Nanchang: Nanchang Hangkong University, 2018.
[13] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[14] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电-氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al.Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[15] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472.
SHEN X J, NIE C Y, LYU H.Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472.
[16] 丁明, 徐宁舟, 毕锐. 用于平抑可再生能源功率波动的储能电站建模及评价[J]. 电力系统自动化, 2011, 35(2): 66-72.
DING M, XU N Z, BI R.Modeling of BESS for smoothing renewable energy output fluctuations[J]. Automation of electric power systems, 2011, 35(2): 66-72.
[17] 刘尚奇, 胡健, 张晓杰, 等. 含光伏和储氢的电-氢集成化能源站容量配置[J]. 太阳能学报, 2023, 44(8): 171-179.
LIU S Q, HU J, ZHANG X J, et al.Capacity configuration of integrated electricity charging and hydrogen refueling station containing photovoltaic and hydrogen storage[J]. Acta energiae solaris sinica, 2023, 44(8): 171-179.
[18] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[19] 李兴莘, 张靖, 何宇, 等. 基于改进粒子群算法的微电网多目标优化调度[J]. 电力科学与工程, 2021, 37(3): 1-7.
LI X S, ZHANG J, HE Y, et al.Multi-objective optimization dispatching of microgrid based on improved particle swarm algorithm[J]. Electric power science and engineering, 2021, 37(3): 1-7.
[20] 王洪涛, 刘玉田. 基于NSGA-Ⅱ的多目标输电网架最优重构[J]. 电力系统自动化, 2009, 33(23): 14-18.
WANG H T, LIU Y T.Multi-objective optimization of power system reconstruction based on NSGA-Ⅱ[J]. Automation of electric power systems, 2009, 33(23): 14-18.
[21] 徐紫东, 许志阳, 燕智超, 等. 基于粒子群算法的源网荷储微电网储能优化技术[J]. 电工技术, 2020(14): 13-15.
XU Z D, XU Z Y, YAN Z C, et al.Optimization technology of energy storage and microgrid energy storage based on particle swarm algorithm[J]. Electric engineering, 2020(14): 13-15.
[22] 王丽明. 基于粒子群算法的孤岛微电网优化调度研究[J]. 电工技术, 2020(4): 55-57.
WANG L M.Research on optimization dispatching of island microgrid based on PSO[J]. Electric engineering, 2020(4): 55-57.
[23] 陶静, 徐武, 李逸琳, 等. 基于多目标算法的冷热电联供型综合能源系统运行优化[J]. 科学技术与工程, 2019, 19(33): 200-205.
TAO J, XU W, LI Y L, et al.Optimal operation of integrated energy system combined cooling heating and power based on multi-objective algorithm[J]. Science technology and engineering, 2019, 19(33): 200-205.
[24] GB/Z 19963—2005, 风电场接入电力系统技术规定[S].
GB/Z 19963—2005,Technical rule for connecting wind farm to power network[S].
PDF(1950 KB)

Accesses

Citation

Detail

Sections
Recommended

/