LINEAR DECOMPOSITION AND PERIODIC ENHANCEMENT IN SHORT-TERM SOLAR IRRADIANCE FORECASTING WITH INFORMER

Yao Rui, Liu Xiaofang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 505-510.

PDF(1515 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1515 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 505-510. DOI: 10.19912/j.0254-0096.tynxb.2023-1655

LINEAR DECOMPOSITION AND PERIODIC ENHANCEMENT IN SHORT-TERM SOLAR IRRADIANCE FORECASTING WITH INFORMER

  • Yao Rui1,2, Liu Xiaofang1
Author information +
History +

Abstract

In response to the inadequacy in capturing trend and periodic features, a method for short arrival prediction of surface solar radiation :s proposed decomposition and periodic-enhancement linear Informer. Firstly, an improved grey relational analysis method captures the correlation between historical irradiance and various external meteorological factors. This method extracts 16 highly correlated external meteorological features, thus enhancing the model's ability to capture the intricate relationship between irradiance and meteorological factors. Subsequently, the Informer model is augmented with periodic embedding layers and ReLU activation functions, which better represents the periodic variations in solar irradiance and provides more accurate temporal features. Finally, an integration of the decomposition scheme from Autoformer and the linear layer from FEDformer as a decomposition linear layer after the Informer. This amalgamation enhances the model’s capability to capture the periodic trends and seasonal components in time series solar irradiance data. Experimental results demonstrate that the proposed Informer Decomposition Linear model, in conjunction with external meteorological features, remarkably improves short-term forecasting performance, surpassing the accuracy of recently prominent Transformer-based approaches. In comparison to the best-performing DLinear model, the maximum

Key words

solar irradiance / Informer / Transformer / smoothing sequential linear decomposition / periodic embedding / grey relational degree

Cite this article

Download Citations
Yao Rui, Liu Xiaofang. LINEAR DECOMPOSITION AND PERIODIC ENHANCEMENT IN SHORT-TERM SOLAR IRRADIANCE FORECASTING WITH INFORMER[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 505-510 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1655

References

[1] HUANG G H, LI Z Q, LI X, et al.Estimating surface solar irradiance from satellites: past, present, and future perspectives[J]. Remote sensing of environment, 2019, 233: 111371.
[2] LI Q Q, ZHANG D P, YAN K.A solar irradiance forecasting framework based on the CEE-WGAN-LSTM model[J]. Sensors, 2023, 23(5): 2799.
[3] 沈钟平, 张华. 影响地面太阳辐射及其谱分布的因子分析[J]. 太阳能学报, 2009, 30(10): 1209-1215.
SHEN Z P, ZHANG H.Analysis on the factors affecting surface solar radiation and its spectral distribution[J]. Acta energiae solaris sinica, 2009, 30(10): 1209-1215.
[4] 郝玉珠, 李兴华, 胡亚男, 等. 内蒙古57年太阳能资源变化规律及影响因子[J]. 太阳能学报, 2021, 42(9): 145-151.
HAO Y Z, LI X H, HU Y N, et al.Change rules and influencing factors of 57 years of solar energy resources in Inner Mongolia[J]. Acta energiae solaris sinica, 2021, 42(9): 145-151.
[5] KRISHNAN N, KUMAR K R, INDA C S.How solar radiation forecasting impacts the utilization of solar energy: a critical review[J]. Journal of cleaner production, 2023, 388: 135860.
[6] 杜智涛, 姜明波, 杜晓勇, 等. 机器学习在气象领域的应用现状与展望[J]. 气象科技, 2021, 49(6): 930-941.
DU Z T, JIANG M B, DU X Y, et al.Application status and prospect of machine learning in meteorology[J]. Meteorological science and technology, 2021, 49(6): 930-941.
[7] AL-QANESS M A A, EWEES A A, FAN H, et al. Wind power prediction using random vector functional link network with capuchin search algorithm[J]. Ain shams engineering journal, 2023, 14(9): 102095.
[8] 普智勇, 夏攀, 张璐, 等. 机器学习与统计方法在太阳能预报中的比较性分析[J]. 太阳能学报, 2023, 44(7): 162-167.
PU Z Y, XIA P, ZHANG L, et al.Comparative analysis of machine learning and statistical methods in solar energy prediction[J]. Acta energiae solaris sinica, 2023, 44(7): 162-167.
[9] PATEL D, PATEL S, PATEL P, et al.Solar radiation and solar energy estimation using ANN and fuzzy logic concept: a comprehensive and systematic study[J]. Environmental science and pollution research, 2022, 29(22): 32428-32442.
[10] 李净, 温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
LI J, WEN S N.Simulation of solar radiation based on three machine learning methods[J]. Remote sensing technology and application, 2020, 35(3): 615-622.
[11] 王雪洁, 施国萍, 周子钦, 等. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
WANG X J, SHI G P, ZHOU Z Q, et al.Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote sensing for natural resources, 2022, 34(2): 105-111.
[12] SALEHI A W, KHAN S, GUPTA G, et al.A study of CNN and transfer learning in medical imaging: advantages, challenges, future scope[J]. Sustainability, 2023, 15(7): 5930.
[13] ZHOU Y, LI Y Z, WANG D J, et al.A multi-step ahead global solar radiation prediction method using an attention-based transformer model with an interpretable mechanism[J]. International journal of hydrogen energy, 2023, 48(40): 15317-15330.
[14] FENG Y, HAO W P, LI H R, et al.Machine learning models to quantify and map daily global solar radiation and photovoltaic power[J]. Renewable and sustainable energy reviews, 2020, 118: 109393.
[15] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 5998-6008.
[16] BAI Y M, ZHAO J S.A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis[J]. Process safety and environmental protection, 2023, 169: 937-947.
[17] POSPÍCHAL J, KUBOVČÍK M, DIRGOVÁ LUPTÁKOVÁ I. Solar irradiance forecasting with transformer model[J]. Applied sciences, 2022, 12(17): 8852.
[18] ZHOU T, MA Z, WEN Q, et al.FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore USA, 2022.
[19] WEN Q S, ZHOU T, ZHANG C L, et al. Transformers in time series: a survey[EB/OL].2022: 2202.07125. https://arxiv.org/abs/2202.07125v5.
[20] ZENG A L, CHEN M X, ZHANG L, et al.Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(9): 11121-11128.
[21] 王涛, 王旭, 许野, 等. 计及相似日的LSTM光伏出力预测模型研究[J]. 太阳能学报, 2023, 44(8): 316-323.
WANG T, WANG X, XU Y, et al.Study on LSTM photovoltaic output prediction model considering similar days[J]. Acta energiae solaris sinica, 2023, 44(8): 316-323.
[22] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[23] WU H, XU J, WANG J, et al.Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems 34. Reed Hook, NY, USA: Curran Associates, Inc., 2021: 22419-22430.
[24] RAMPÁŠEK L, GALKIN M, DWIVEDI V P, et al. Recipe for a general, powerful, scalable graph transformer[C]//Advances in Neural Information Processing Systems 35. Reed Hook, NY, USA: Curran Associates, Inc., 2022: 14501-14515.
PDF(1515 KB)

Accesses

Citation

Detail

Sections
Recommended

/