RESEARCH ON WIND POWER BLADE FRACTURE WARNING BASED ON NEST MODEL

Chang Li, Wang Suisui, Zhou Bo, Li Hui

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 600-606.

PDF(5133 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5133 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 600-606. DOI: 10.19912/j.0254-0096.tynxb.2023-1659

RESEARCH ON WIND POWER BLADE FRACTURE WARNING BASED ON NEST MODEL

  • Chang Li1, Wang Suisui1, Zhou Bo2, Li Hui3
Author information +
History +

Abstract

In order to solve the problem of non-destructive monitoring and early warning of wind power blade breakage, a method of monitoring and early warning of wind power blade breakage was proposed based on monitoring control and data acquisition system and nonlinear state estimation technology. Firstly, it was proposed to screen parameters through Chi-square test and error contribution rate analysis, which involved dimensionality reduction and redundancy reduction of SCADA data to obtained SCADA parameters related to blade operation status.Then, NSET was used to fuse the selected parameters, and the blade fracture was judged by the similarity curve of modeling output. Finally, the blade fracture data of 1.5 MW wind turbine in a wind farm was used to verify the effectiveness of the method and the fracture warning threshold was determined.When the similarity reaches 0.26, the blade fracture warning can be conducted 3.93 h in advance.The experimental results show that the proposed method can effectively nondestructive monitoring of blade breakage, and provide a reference for the early warning threshold of wind power blade breakage.

Key words

Chi-square test / nonlinear state estimate / wind turbine blade / fracture monitoring / SCADA / non-destructive testing

Cite this article

Download Citations
Chang Li, Wang Suisui, Zhou Bo, Li Hui. RESEARCH ON WIND POWER BLADE FRACTURE WARNING BASED ON NEST MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 600-606 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1659

References

[1] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[2] 张华强, 刘林, 秦昌礼, 等. 基于惯性网络的兆瓦级风电叶片形变测量算法研究[J]. 太阳能学报, 2022, 43(10): 186-191.
ZHANG H Q, LIU L, QIN C L, et al.Research on deformation measurement algorithm of megawatt wind turbine blade based on inertial network[J]. Acta energiae solaris sinica, 2022, 43(10): 186-191.
[3] 金晓航, 许壮伟, 孙毅, 等. 基于SCADA数据分析和稀疏自编码神经网络的风电机组在线运行状态监测[J]. 太阳能学报, 2021, 42(6): 321-328.
JIN X H, XU Z W, SUN Y, et al.Online condition monitoring for wind turbines based on SCADA data analysis and sparse auto-encoder neural network[J]. Acta energiae solaris sinica, 2021, 42(6): 321-328.
[4] 戴巨川. 叶片断裂事故条件下直驱式风电机组动态特性分析[J]. 机械工程学报, 2013, 49(2): 190-198.
DAI J C.Dynamic characteristics analyzed of large scale directly-driven wind turbines under blade fracture accident condition[J]. Journal of mechanical engineering, 2013, 49(2): 190-198.
[5] CHEN X.Fracture of wind turbine blades in operation: Part I: a comprehensive forensic investigation[J]. Wind energy, 2018, 21(11): 1046-1063.
[6] 魏书荣, 张鑫, 符杨, 等. 基于GRA-LSTM-Stacking模型的海上双馈风力发电机早期故障预警与诊断[J]. 中国电机工程学报, 2021, 41(7): 2373-2383.
WEI S R, ZHANG X, FU Y, et al.Early fault warning and diagnosis of offshore wind DFIG based on GRA-LSTM-stacking model[J]. Proceedings of the CSEE, 2021, 41(7): 2373-2383.
[7] CHEN H G, XIE C, DAI J C, et al.SCADA data-based working condition classification for condition assessment of wind turbine main transmission system[J]. Energies, 2021, 14(21): 7043.
[8] 廖志伟, 陈琳韬, 黄杰栋, 等. 基于特征空间变换与LSTM的中短期电煤价格预测[J]. 东北大学学报(自然科学版), 2021, 42(4): 483-493.
LIAO Z W, CHEN L T, HUANG J D, et al.Medium and short-term electricity coal price forecast based on feature space transformation and LSTM[J]. Journal of Northeastern University (natural science), 2021, 42(4): 483-493.
[9] 尹诗, 余忠源, 孟凯峰, 等. 基于非线性状态估计的风电机组变桨控制系统故障识别[J]. 中国电机工程学报, 2014, 34(增刊1): 160-165.
YIN S, YU Z Y, MENG K F, et al.Fault identification of wind turbine variable rotor control system based on nonlinear state estimation[J]. Proceedings of the CSEE, 2014, 34(Sup 1): 160-165.
[10] WU X, SU L C.Wind turbine modeling research based on the combination of SCADA and vibration signals[C]//2017 4th International Conference on Information Science and Control Engineering (ICISCE). Changsha, China, 2017: 1331-1335.
[11] 王梓齐, 刘长良, 刘帅. 基于集成NSET和模糊软聚类的风电机组齿轮箱状态监测[J]. 仪器仪表学报, 2019, 40(7): 138-146.
WANG Z Q, LIU C L, LIU S.Condition monitoring of wind turbine gearbox based on ensemble nonlinear state estimation technique and soft fuzzy clustering[J]. Chinese journal of scientific instrument, 2019, 40(7): 138-146.
PDF(5133 KB)

Accesses

Citation

Detail

Sections
Recommended

/