LIFETIME PREDICTION OF PEMFC BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

Chen Jingwen, Yang Qi, Lan Tianyi, Hua Zhiguang, Zhao Dongdong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 135-141.

PDF(2625 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2625 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 135-141. DOI: 10.19912/j.0254-0096.tynxb.2023-1698

LIFETIME PREDICTION OF PEMFC BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Chen Jingwen1, Yang Qi1, Lan Tianyi1, Hua Zhiguang2, Zhao Dongdong2
Author information +
History +

Abstract

The data-driven prediction method can predict the lifetime of proton exchange membrane fuel cells (PEMFC). To improve the accuracy of PEMFC lifetime prediction, this paper proposes a PEMFC remaining useful life prediction method that combines the ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM) optimized by particle swarm algorithm (PSO). First, the moving average filter method is used to retain the main trends of the original data while filtering out noise and spikes. Second, the original data are decomposed in multiple time scales by EEMD to obtain the aging information of PEMFC in different time scales. Last, the intrinsic mode functions are respectively predicted by the PSO-ELM model, which can reduce the computational complexity while ensuring the prediction accuracy. By comparing the prediction results with the classical ELM model, this method can predict the aging trend of PEMFC more accurately.

Key words

proton exchange membrane fuel cell / prediction / empirical mode decomposition / extreme learning machine

Cite this article

Download Citations
Chen Jingwen, Yang Qi, Lan Tianyi, Hua Zhiguang, Zhao Dongdong. LIFETIME PREDICTION OF PEMFC BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 135-141 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1698

References

[1] 陶丽蓉, 刘煜, 孔红兵, 等. 质子交换膜燃料电池整车辅助散热系统设计建模及分析[J]. 太阳能学报, 2023, 44(4): 299-305.
TAO L R, LIU Y, KONG H B, et al.Design, modeling and analysis of auxiliary heat dissipation system for proton exchange membrane fuel cell vehicle[J]. Acta energiae solaris sinica, 2023, 44(4): 299-305.
[2] 刘川毓, 张雪霞, 蒋宇, 等. 基于MFDFA的PEMFC水淹和膜干故障诊断[J]. 太阳能学报, 2023, 44(8): 85-91.
LIU C Y, ZHANG X X, JIANG Y, et al.Fault diagnosis of PEMFC flooding and membrane drying based on MFDFA[J]. Acta energiae solaris sinica, 2023, 44(8): 85-91.
[3] ZUO J, CADET C, LI Z L, et al.A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load[J]. Reliability engineering & system safety, 2024, 241: 109660.
[4] HUA Z G, ZHENG Z X, PAHON E, et al.A review on lifetime prediction of proton exchange membrane fuel cells system[J]. Journal of power sources, 2022, 529: 231256.
[5] VASILYEV A, ANDREWS J, JACKSON L M, et al.Component-based modelling of PEM fuel cells with bond graphs[J]. International journal of hydrogen energy, 2017, 42(49): 29406-29421.
[6] LIU H, CHEN J, HISSEL D, et al.Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method[J]. Applied energy, 2019, 237: 910-919.
[7] CHEN K, LAGHROUCHE S, DJERDIR A.Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[J]. Applied energy, 2019, 252: 113439.
[8] 金晓航, 泮恒拓, 徐正国. 数据驱动的风电机组变桨系统状态监测[J]. 太阳能学报, 2022, 43(4): 409-417.
JIN X H, PAN H T, XU Z G.Condition monitoring of wind turbine pitch system using data-driven approach[J]. Acta energiae solaris sinica, 2022, 43(4): 409-417.
[9] JAVED K, GOURIVEAU R, ZERHOUNI N, et al.Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[J]. Journal of power sources, 2016, 324: 745-757.
[10] 刘嘉蔚, 李奇, 陈维荣, 等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报, 2019, 39(24): 7272-7279.
LIU J W, LI Q, CHEN W R, et al.Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279.
[11] ZHANG X X, YU Z X, CHEN W R.Life prediction based on D-S ELM for PEMFC[J]. Energies, 2019, 12(19): 3752.
[12] CHEN K, LAGHROUCHE S, DJERDIR A.Proton exchange membrane fuel cell prognostics using genetic algorithm and extreme learning machine[J]. Fuel cells, 2020, 20(3): 263-271.
PDF(2625 KB)

Accesses

Citation

Detail

Sections
Recommended

/