SCHEDULING OPTIMIZATION OF HOME ELECTRIC HEATING INTEGRATED ENERGY SYSTEM WITH THERMAL COMFORT IMPROVEMENT

Wang Yunlong, Han Lu, Luo Shulin, Yang Yihang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 165-174.

PDF(2735 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2735 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 165-174. DOI: 10.19912/j.0254-0096.tynxb.2023-1724

SCHEDULING OPTIMIZATION OF HOME ELECTRIC HEATING INTEGRATED ENERGY SYSTEM WITH THERMAL COMFORT IMPROVEMENT

  • Wang Yunlong, Han Lu, Luo Shulin, Yang Yihang
Author information +
History +

Abstract

In order to improve the thermal comfort of the system and at the same time fully explore the elastic guidance of thermal comfort on thermal load to improve the photovoltaic absorption space of the system, this paper fully considers the operation impact of energy equipment such as heat pump, photovoltaic, and fuel cell, and proposes a household fuel cell combined heat and power (DFCCHP) system electric heating scheduling scheme that takes into account the improvement of thermal comfort. According to the user’s heating demand, the household thermal load is divided into hot water thermal load and heating thermal load, and the PMV index is introduced to guide the indoor temperature; under the condition of the time-of-use electricity price and gas price, a multi-objective household electric heating joint optimization scheduling model is established, which aims at minimizing the energy purchase cost and optimizing the thermal comfort. The elastic demand of the thermal load is fully exploited, and the thermal comfort optimization objective is introduced to guide the scheduling of the thermal load, and the particle swarm algorithm is used to solve the model. Finally, the simulation explores the influence of the multi-objective optimization with the thermal comfort objective on the system cost, thermal comfort and photovoltaic local consumption under different weight G values. The results show that after considering the thermal comfort objective, the system energy purchase cost increases slightly, but the system thermal comfort is improved and the system photovoltaic local consumption is increased, which greatly improves the comprehensive utilization of energy.

Key words

mathematical models / thermal comfort / integrated energy system / PMV / photovoltaic absorption / optimization

Cite this article

Download Citations
Wang Yunlong, Han Lu, Luo Shulin, Yang Yihang. SCHEDULING OPTIMIZATION OF HOME ELECTRIC HEATING INTEGRATED ENERGY SYSTEM WITH THERMAL COMFORT IMPROVEMENT[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 165-174 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1724

References

[1] 蔡钦钦, 杨晓华, 朱永强. 楼宇能量管理系统的光伏消纳与储能调度研究[J]. 电力建设, 2020, 41(1): 23-31.
CAI Q Q, YANG X H, ZHU Y Q.Research on photovoltaic accommodation and energy storage scheduling of building energy management system[J]. Electric power construction, 2020, 41(1): 23-31.
[2] ALIERO M S, ASIF M, GHANI I, et al.Systematic review analysis on smart building: challenges and opportunities[J]. Sustainability, 2022, 14(5): 3009.
[3] 金炼, 张亚君, 杨尚恒, 等. 家庭用微型热电联产技术[J]. 现代化工, 2012, 32(5): 6-9, 15.
JIN L, ZHANG Y J, YANG S H, et al.Micro-combined heat and power technology for household use[J]. Modern chemical industry, 2012, 32(5): 6-9, 15.
[4] 刘洪, 王亦然, 李积逊, 等. 考虑建筑热平衡与柔性舒适度的乡村微能源网电热联合调度[J]. 电力系统自动化, 2019, 43(9): 50-58.
LIU H, WANG Y R, LI J X, et al.Coordinated heat and power dispatch of micro-energy network of countryside considering heat balance model of building and flexible indoor comfort constraint[J]. Automation of electric power systems, 2019, 43(9): 50-58.
[5] 董彧彤, 王艳松, 倪承波, 等. 计及用热舒适度弹性的热电联合优化调度[J]. 电力系统保护与控制, 2021, 49(23): 26-34.
DONG Y T, WANG Y S, NI C B, et al.Dispatch of a combined heat-power system considering elasticity with thermal comfort[J]. Power system protection and control, 2021, 49(23): 26-34.
[6] 林俐, 顾嘉, 王铃. 面向风电消纳的考虑热网特性及热舒适度弹性的电热联合优化调度[J]. 电网技术, 2019, 43(10): 3648-3661.
LIN L, GU J, WANG L.Optimal dispatching of combined heat-power system considering characteristics of thermal network and thermal comfort elasticity for wind power accommodation[J]. Power system technology, 2019, 43(10): 3648-3661.
[7] 肖群, 王晓晶, 任荣荣. 考虑热舒适度模糊特性的电热联合系统节能优化调度模型研究[J]. 可再生能源, 2022, 40(5): 667-674.
XIAO Q, WANG X J, REN R R.Study on energy-saving optimal dispatch model of power-thermal combined system considering fuzzy characteristic of thermal comfort[J]. Renewable energy resources, 2022, 40(5): 667-674.
[8] 金国锋, 邢敬舒, 张林, 等. 考虑用户舒适度的蓄热式电采暖参与风电消纳的多目标优化[J]. 电力建设, 2022, 43(3): 12-21.
JIN G F, XING J S, ZHANG L, et al.Multi-objective optimization of wind power accommodation with regenerative electric heating considering user comfort[J]. Electric power construction, 2022, 43(3): 12-21.
[9] LEITÃO J, GIL P, RIBEIRO B, et al. A survey on home energy management[J]. IEEE access, 2020, 8: 5699-5722.
[10] YAO L, TEO J C.Optimization of power dispatch with load scheduling for domestic fuel cell-based combined heat and power system[J]. IEEE access, 2022, 10: 5968-5979.
[11] 张华一, 文福拴, 张璨, 等. 计及舒适度的家庭能源中心运行优化模型[J]. 电力系统自动化, 2016, 40(20): 32-39.
ZHANG H Y, WEN F S, ZHANG C, et al.Operation optimization model of home energy hubs considering comfort level of customers[J]. Automation of electric power systems, 2016, 40(20): 32-39.
[12] ABDELAAL G, GILANY M I, ELSHAHED M, et al.Integration of electric vehicles in home energy management considering urgent charging and battery degradation[J]. IEEE access, 2021, 9: 47713-47730.
[13] HUANG Y T, ZHANG J J, MO Y J, et al. A hybrid optimization approach for residential energy management[J]. IEEE access, 2906, 8: 225201-225209.
[14] 蔡钦钦, 肖宇, 朱永强. 计及电转氢和燃料电池的电热微网日前经济协调调度模型[J]. 电力自动化设备, 2021, 41(10): 107-112, 161.
CAI Q Q, XIAO Y, ZHU Y Q.Day-ahead economic coordination dispatch model of electricity-heat microgrid considering P2H and fuel cells[J]. Electric power automation equipment, 2021, 41(10): 107-112, 161.
[15] CUI Q S, BAI X M, DONG W J.Collaborative planning of distributed wind power generation and distribution network with large-scale heat pumps[J]. CSEE journal of power and energy systems, 2019, 5(3): 335-347.
[16] 初壮, 赵蕾, 孙健浩, 等. 考虑热能动态平衡的含氢储能的综合能源系统热电优化[J]. 电力系统保护与控制, 2023, 51(3): 1-12.
CHU Z, ZHAO L, SUN J H, et al.Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance[J]. Power system protection and control, 2023, 51(3): 1-12.
[17] 朱霄珣, 刘占田, 薛劲飞, 等. 计及柔性负荷参与的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(9): 29-38.
ZHU X X, LIU Z T, XUE J F, et al.Optimal scheduling of integrated energy system with flexible load participation[J]. Acta energiae solaris sinica, 2023, 44(9): 29-38.
[18] 朱西平, 江强, 钟宇, 等. 计及前瞻风险的综合能源系统低碳经济调度优化[J]. 太阳能学报, 2023, 44(6): 113-121.
ZHU X P, JIANG Q, ZHONG Y, et al.Low-carbon economic dispatch optimization of integrated energy system considering forward-looking risks[J]. Acta energiae solaris sinica, 2023, 44(6): 113-121.
[19] 汪德成, 李妍, 张群, 等. 冷热电储一体化综合能源系统优化研究[J]. 太阳能学报, 2023, 44(6): 130-136.
WANG D C, LI Y, ZHANG Q, et al.Research on optimization of cooling, heating, electricity and storage multi-energy coupling system[J]. Acta energiae solaris sinica, 2023, 44(6): 130-136.
[20] 李虹, 林兰心, 赵小军. 基于需求侧用户响应分析的电-气-热综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(5): 97-105.
LI H, LIN L X, ZHAO X J.Low carbon economic scheduling of electricity-gas-heat integrated energy system based on demand-side user response analysis[J]. Acta energiae solaris sinica, 2023, 44(5): 97-105.
PDF(2735 KB)

Accesses

Citation

Detail

Sections
Recommended

/