RUL PREDICTION FOR LITHIUM-ION BATTERIES BASED ON DWD-SVR MODEL

Wang Xiaoming, He Ye, Wang Lulu, Wu Hongbin, Xu Bin, Zhao Wenguang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 52-59.

PDF(1845 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1845 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 52-59. DOI: 10.19912/j.0254-0096.tynxb.2023-1737

RUL PREDICTION FOR LITHIUM-ION BATTERIES BASED ON DWD-SVR MODEL

  • Wang Xiaoming1,2, He Ye1, Wang Lulu1, Wu Hongbin1, Xu Bin2, Zhao Wenguang2
Author information +
History +

Abstract

The remaining useful life (RUL) prediction of Lithium-ion batteries is crucial to ensure the safe and stable operation of Lithium-ion battery energy storage devices. Aiming at the problem of low RUL prediction accuracy due to the non-linear and multi-scale characteristics of the capacity degradation characteristics of Lithium-ion batteries, a RUL prediction method for Lithium-ion batteries based on the discrete wavelet decomposition (DWD) and support vector regression (SVR) model is proposed in the paper. First, the global degradation trend, local regeneration and fluctuation components of capacity are extracted using discrete wavelet decomposition, which can reduce the influence of local regeneration and fluctuation phenomena on the machine learning algorithm to predict the capacity degradation process. Then, each decomposition subsequence is reconstructed based on sample entropy, alignment entropy and K-means clustering method to reduce the number of local regeneration and fluctuating subsequences in the decomposition signals and improve the prediction efficiency. Experimental results based on the NASA lithium-ion battery dataset show that the proposed prediction method is able to ensure the accuracy of global degradation trend prediction while responding to fluctuations in a timely manner to improve the RUL prediction accuracy.

Key words

Lithium-ion batteries / support vector regression / K-means clustering / remaining useful life / discrete wavelet decomposition

Cite this article

Download Citations
Wang Xiaoming, He Ye, Wang Lulu, Wu Hongbin, Xu Bin, Zhao Wenguang. RUL PREDICTION FOR LITHIUM-ION BATTERIES BASED ON DWD-SVR MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 52-59 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1737

References

[1] 贾东卫, 任永峰, 李莉美, 等. 基于集合经验模态分解的微电网混合储能优化配置[J]. 太阳能学报, 2023, 44(2): 239-246.
JIA D W, REN Y F, LI L M, et al.Research on optimization of hybrid energy storage capacity using ensemble empirical mode decomposition and fuzzy control[J]. Acta energiae solaris sinica, 2023, 44(2): 239-246.
[2] 方斯顿, 王鸿东, 张沈习, 等. 考虑蓄电池寿命损耗的最优船舶储能系统调度[J]. 中国电机工程学报, 2020, 40(23): 7566-7578.
FANG S D, WANG H D, ZHANG S X, et al.Optimal management of shipboard energy storage system considering battery lifetime degradation[J]. Proceedings of the CSEE, 2020, 40(23): 7566-7578.
[3] 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-692.
LI C R, XIAO F, FAN Y X, et al.Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692.
[4] 王义军, 左雪. 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46(14): 193-207.
WANG Y J, ZUO X.Review on estimation methods for state of charge of lithium-ion battery and their application scenarios[J]. Automation of electric power systems, 2022, 46(14): 193-207.
[5] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[6] GUHA A, PATRA A.Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]. IEEE transactions on instrumentation and measurement, 2018, 67(8): 1836-1849.
[7] KHODADADI SADABADI K, JIN X, RIZZONI G.Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of power sources, 2021, 481: 228861.
[8] LIU Q Q, ZHANG J Y, LI K, et al.The remaining useful life prediction by using electrochemical model in the particle filter framework for lithium-ion batteries[J]. IEEE access, 2020, 8: 126661-126670.
[9] LONG B, XIAN W M, JIANG L, et al.An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries[J]. Microelectronics reliability, 2013, 53(6): 821-831.
[10] ZHOU Y P, HUANG M H.Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics reliability, 2016, 65: 265-273.
[11] NG S S Y, XING Y J, TSUI K L. A naive bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied energy, 2014, 118: 114-123.
[12] DING P, LIU X J, LI H Q, et al.Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries[J]. Renewable and sustainable energy reviews, 2021, 148: 111287.
[13] YANG Z S, WANG Y H, KONG C Z.Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 2517011.
[14] LI X Y, WANG Z P, YAN J Y.Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of power sources, 2019, 421: 56-67.
[15] LI L L, WANG P C, CHAO K H, et al.Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PLoS One, 2016, 11(9): e0163004.
[16] TANG S J, YU C Q, WANG X, et al.Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error[J]. Energies, 2014, 7(2): 520-547.
[17] SET F B D. NASA Ames prognostics data repository[J]. NASA Ames Research Center, Moffett Field, CA.
[18] 李天博, 顾勇, 陈坤华. 基于复小波变换和Teager能量算子的电压跌落检测方法研究[J]. 电测与仪表, 2020, 57(4): 43-48.
LI T B, GU Y, CHEN K H.Research of voltage sag detection method based on complex wavelet transform and Teager energy operator[J]. Electrical measurement & instrumentation, 2020, 57(4): 43-48.
[19] 吴红斌, 何叶, 赵波, 等. 基于改进K-means聚类算法的风电场动态等值[J]. 太阳能学报, 2018, 39(11): 3232-3238.
WU H B, HE Y, ZHAO B, et al.Research on dynamic equivalent of wind farm based on improved K-means clustering algorithm[J]. Acta energiae solaris sinica, 2018, 39(11): 3232-3238.
[20] RICHMAN J S, MOORMAN J R.Physiological time-series analysis using approximate entropy and sample entropy[J]. American journal of physiology heart and circulatory physiology, 2000, 278(6): H2039-H2049.
[21] BANDT C, POMPE B.Permutation entropy: a natural complexity measure for time series[J]. Physical review letters, 2002, 88(17): 174102.
[22] XUE Z W, ZHANG Y, CHENG C, et al.Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376: 95-102.
PDF(1845 KB)

Accesses

Citation

Detail

Sections
Recommended

/