DAMAGE IDENTIFICATION OF WIND TURBINE PITCH BEARING BASED ON AFMD AND SVDD

Wang Xiaolong, Zhang Bowen, Jin Hanwei, Fu Ruiqi, Yang Xiubin, Wu Peng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 514-523.

PDF(3733 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3733 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 514-523. DOI: 10.19912/j.0254-0096.tynxb.2023-1743

DAMAGE IDENTIFICATION OF WIND TURBINE PITCH BEARING BASED ON AFMD AND SVDD

  • Wang Xiaolong1, Zhang Bowen1, Jin Hanwei1, Fu Ruiqi1, Yang Xiubin1, Wu Peng2
Author information +
History +

Abstract

Aiming at the problem of damage identification of pitch bearings of wind turbine, a damage identification method based on adaptive feature mode decomposition and singular value decomposition denoising is proposed. Firstly, Runge kutta optimization is used to search for the frequency band number and the filter length parameters of the feature mode decomposition algorithm, then the optimal combination of influencing parameters is determined and the original vibration signal is processed by adaptive feature mode decomposition, and the mode component containing rich feature information is extracted. Subsequently, the envelope signal of the extracted mode component is calculated and the singular value decomposition denoising is further operated to enhance the signal-to-noise ratio of the envelope signal. Finally, the theoretical damage characteristic frequency and the frequency component with prominent amplitude in the envelope spectrum are compared to judge the fault damage of the pitch bearing. Experimental data analysis results show that the proposed method can effectively extract weak feature information from complex original vibration signal and accurately identify the damage part of pitch bearing, which has certain engineering reference value.

Key words

wind turbines / pitch bearing / damage identification / adaptive feature mode decomposition / singular value decomposition denoising

Cite this article

Download Citations
Wang Xiaolong, Zhang Bowen, Jin Hanwei, Fu Ruiqi, Yang Xiubin, Wu Peng. DAMAGE IDENTIFICATION OF WIND TURBINE PITCH BEARING BASED ON AFMD AND SVDD[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 514-523 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1743

References

[1] 孙欣宇, 向东, 丁伟, 等. 基于麻雀搜索算法的风电机组独立变桨控制研究[J]. 太阳能学报, 2023, 44(10): 266-274.
SUN X Y, XIANG D, DING W, et al.Research on individual pitch control of wind turbine based on sparrow search algorithm[J]. Acta energiae solaris sinica, 2023, 44(10): 266-274.
[2] 马振国, 邓巍, 赵勇, 等. 风力机变桨轴承故障诊断的冲击链检测法[J]. 机械科学与技术, 2020, 39(9): 1426-1431.
MA Z G, DENG W, ZHAO Y, et al.Shock-chain detection method for fault diagnosis of wind turbine pitch bearing[J]. Mechanical science and technology for aerospace engineering, 2020, 39(9): 1426-1431.
[3] 李婷, 付德义, 薛扬. 基于AE与STFT的变桨轴承裂纹诊断研究[J]. 振动测试与诊断, 2021, 41(2): 299-303, 412.
LI T, FU D Y, XUE Y.Research on crack diagnosis of pitch bearing based on AE and STFT[J]. Journal of vibration, measurement & diagnosis, 2021, 41(2): 299-303, 412.
[4] 赵阳, 陈捷, 洪荣晶, 等. EMD和独立分量分析在转盘轴承故障诊断中的应用[J]. 轴承, 2015(7): 54-59.
ZHAO Y, CHEN J, HONG R J, et al.Application of EMD and ICA in fault diagnosis for slewing bearings[J]. Bearing, 2015(7): 54-59.
[5] 杨杰, 陈捷, 洪荣晶, 等. PCA和自相关包络分析在转盘轴承故障诊断中的应用[J]. 轴承, 2014(10): 54-58.
YANG J, CHEN J, HONG R J, et al.Application of PCA and autocorrelation envelope analysis in fault diagnosis for slewing bearings[J]. Bearing, 2014(10): 54-58.
[6] 王晓龙, 唐贵基, 何玉灵, 等. 变转速工况下基于改进奇异谱分解和1.5维包络阶次谱的风电机组轴承损伤识别[J]. 太阳能学报, 2021, 42(1): 240-247.
WANG X L, TANG G J, HE Y L, et al.Injury identification of wind turbine bearing based on ISSD and 1.5 dimension envelope order spectrum under variable rotating speed condition[J]. Acta energiae solaris sinica, 2021, 42(1): 240-247.
[7] MIAO Y H, ZHANG B Y, LI C H, et al.Feature mode decomposition: new decomposition theory for rotating machinery fault diagnosis[J]. IEEE transactions on industrial electronics, 2023, 70(2): 1949-1960.
[8] AHMADIANFAR I, HEIDARI A A, GANDOMI A H, et al.RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method[J]. Expert systems with applications, 2021, 181: 115079.
[9] 张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3): 129-138.
ZHANG L, XIONG G L, HUANG W Y.New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of mechanical engineering, 2015, 51(3): 129-138.
[10] 王丽婕, 刘田梦, 王勃, 等. 基于奇异值分解与卡尔曼滤波修正多位置NWP的短期风电功率预测[J]. 太阳能学报, 2022, 43(12): 392-398.
WANG L J, LIU T M, WANG B, et al.Short-term wind power prediction based on SVD and Kalman filter correction of multi-position NWP[J]. Acta energiae solaris sinica, 2022, 43(12): 392-398.
[11] 王海山. 轴对称静电场电位导数计算的数值方法探究[J]. 长春光学精密机械学院学报, 1994, 17(3): 23-27.
WANG H S.Research on the numerical methods for calculating the derivatives of electropotential of an axisymmetrical electrostatic field[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1994, 17(3): 23-27.
[12] 陈剑, 刘圆圆, 黄凯旋, 等. 基于奇异值分解和独立分量分析的滚动轴承故障诊断方法[J]. 计量学报, 2022, 43(6): 777-785.
CHEN J, LIU Y Y, HUANG K X, et al.Rolling bearing fault diagnosis method based on singular value decomposition and independent component analysis[J]. Acta metrologica sinica, 2022, 43(6): 777-785.
[13] DYBAŁA J. Diagnosing of rolling-element bearings using amplitude level-based decomposition of machine vibration signal[J]. Measurement, 2018, 126: 143-155.
[14] PANG B, NAZARI M, TANG G J.Recursive variational mode extraction and its application in rolling bearing fault diagnosis[J]. Mechanical systems and signal processing, 2022, 165: 108321.
[15] 杨栋, 黄民, 马超. 基于WOA-VMD和快速谱峭度的轴承故障诊断[J]. 北京信息科技大学学报(自然科学版), 2023, 38(2): 16-22.
YANG D, HUANG M, MA C.Bearing fault diagnosis based on WOA-VMD and fast spectral kurtosis[J]. Journal of Beijing Information Science & Technology University, 2023, 38(2): 16-22.
[16] 王振亚, 伍星, 刘韬, 等. 奇异谱分解联合互信息的主轴轴承故障特征提取研究[J]. 振动与冲击, 2023, 42(15): 23-30, 47.
WANG Z Y, WU X, LIU T, et al.Fault feature extraction of spindle bearing based on SSD and MI[J]. Journal of vibration and shock, 2023, 42(15): 23-30, 47.
[17] 李妍, 赵艳杰, 李怀金. 一种SSB信号频域信噪比估计算法[J]. 通信技术, 2009, 42(3): 19-21.
LI Y, ZHAO Y J, LI H J.An algorithm of SNR frequency-domain estimation for SSB signals[J]. Communications technology, 2009, 42(3): 19-21.
PDF(3733 KB)

Accesses

Citation

Detail

Sections
Recommended

/