RESEARCH PROGRESS IN PREPARATION TECHNOLOGY OF LARGE-SIZED PHOTOVOLTAIC MONOCRYSTALLINE SILICON

Kang Jiaming, Huang Zhenling, Li Tai, Zhao Liang, Zhou Xiang, Lyu Guoqiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 310-319.

PDF(4329 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4329 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 310-319. DOI: 10.19912/j.0254-0096.tynxb.2023-1746

RESEARCH PROGRESS IN PREPARATION TECHNOLOGY OF LARGE-SIZED PHOTOVOLTAIC MONOCRYSTALLINE SILICON

  • Kang Jiaming1,2, Huang Zhenling1,2, Li Tai1,2, Zhao Liang1,2, Zhou Xiang1,2, Lyu Guoqiang1,2
Author information +
History +

Abstract

This paper summarizes the research status and characteristics of existing large-size photovoltaic grade monocrystalline silicon preparation technologies such asrecharged Czochralski(RCZ)and off-furnace charged Czochralski(OCZ), continuous Czochralski(CCZ), etc., compares and analyzes the advantages and difficulties of several photovoltaic monocrystalline silicon preparation technologies in terms of large-size, high quality, and low cost, and makes prospects for the development of photovoltaic monocrystalline silicon growth technology based on the analysis of future silicon material sources.

Key words

monocrystalline silicon / silicon wafers / crucibles / solar cells / Czochralski method

Cite this article

Download Citations
Kang Jiaming, Huang Zhenling, Li Tai, Zhao Liang, Zhou Xiang, Lyu Guoqiang. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY OF LARGE-SIZED PHOTOVOLTAIC MONOCRYSTALLINE SILICON[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 310-319 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1746

References

[1] MÜLLER G. The Czochralski Method-where we are 90 years after Jan Czochralski’s invention[J]. Crystal research and technology, 2007, 42(12): 1150-1161.
[2] ROST H J, MENZEL R, SICHE D, et al.Defect formation in Si-crystals grown on large diameter bulk seeds by a modified FZ-method[J]. Journal of crystal growth, 2018, 500: 5-10.
[3] VORONKOV V V.The mechanism of swirl defects formation in silicon[J]. Journal of crystal growth, 1982, 59(3): 625-643.
[4] 梁骏吾, 郑敏政, 袁桐, 等. 中国硅材料工业的前景与挑战[J]. 中国集成电路, 2002, 11(3): 36-38.
LIANG J W, ZHENG M Z, YUAN T, et al.Prospects and challenges of silicon material industry in China[J]. China integrated circuit, 2002, 11(3): 36-38.
[5] 赵玉文, 李仲明, 莫春东, 等. 高效单晶硅太阳电池的研制[J]. 太阳能学报, 1996, 17(2): 12-15.
ZHAO Y W, LI Z M, MO C D, et al.Studies on high efficiency silicon solar cells[J]. Acta energiae solaris sinica, 1996, 17(2): 12-15.
[6] 卢景霄, 张宇翔, 王海燕, 等. 硅太阳电池稳步走向薄膜化[J]. 太阳能学报, 2006, 27(5): 444-450.
LU J X, ZHANG Y X, WANG H Y, et al.The trend of changing silicon wafer-based solar cells gradually into thin films[J]. Acta energiae solaris sinica, 2006, 27(5): 444-450.
[7] 苑进社. 常规单晶硅太阳电池在低倍聚光条件下应用研究[J]. 太阳能学报, 2003, 24(2): 253-256.
YUAN J S.Applications of conventional silicon cells with solar booster[J]. Acta energiae solaris sinica, 2003, 24(2): 253-256.
[8] 李芬, 陈正洪, 蔡涛, 等. 并网光伏系统性能精细化评估方法研究[J]. 太阳能学报, 2013, 34(6): 974-983.
LI F, CHEN Z H, CAI T, et al.Refinement assessment method of grid-connected PV system performance[J]. Acta energiae solaris sinica, 2013, 34(6): 974-983.
[9] 郑海兴, 舒碧芬, 沈辉, 等. 晶体硅组件长期运行后性能及衰退原因分析[J]. 太阳能学报, 2012, 33(4): 614-617.
ZHENG H X, SHU B F, SHEN H, et al.Analysis of performance and degradation of silicon PV modules after long term operation[J]. Acta energiae solaris sinica, 2012, 33(4): 614-617.
[10] 王勃华. 我国光伏产业发展形势与未来展望[J]. 电气时代, 2023(1): 16-19.
WANG B H.Development situation and future prospect of photovoltaic industry in China[J]. Electric age, 2023(1): 16-19.
[11] 张鑫. 2021年全球及中国工业硅市场供需现状分析,电力成本占据工业硅核心[EB/OL]. http://www.huaon.com.
ZHANG X. Analysis of the supply and demand status of the global and Chinese industrial silicon market in2021, with power costs occupying the core of industrial silicon[EB/OL]. http://www.huaon.com.
[12] 谢玮. 站上“双碳” 高地光伏“大时代”[J]. 中国经济周刊, 2022(22): 40-47.
XIE W.Standing on the "dual carbon" highland of photovoltaic "big era"[J]. China economic weekly, 2022(22): 40-47.
[13] 周涛, 陆晓东, 张明, 等. 晶硅太阳能电池发展状况及趋势[J]. 激光与光电子学进展, 2013, 50(3): 030002.
ZHOU T, LU X D, ZHANG M, et al.Crystalline silicon solar-cell development status and trends[J]. Laser & optoelectronics progress, 2013, 50(3): 030002.
[14] JESSICA. 100mm-210mm硅片尺寸演变40年[EB/OL].https://guangfu.bjx.com.cn.
JESSICA. 40 years of evolution in the size of 100mm-210mm silicon wafers[EB/OL].https://guangfu.bjx.com.cn.
[15] 张梦宇, 李太, 杜汕霖, 等. 直拉法单晶硅制备过程控氧技术研究进展[J]. 硅酸盐通报, 2022, 41(9): 3259-3271, 3278.
ZHANG M Y, LI T, DU S L, et al.Research progress on oxygen control technology during preparation of czochralski single-crystal silicon[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3259-3271, 3278.
[16] 老范研报. 光伏硅片:技术进步持续推动降本增效,大尺寸产能紧俏催生新需求[EB/OL]. https://xueqiu.com.
LAOFANYANBAO. Photovoltaic silicon wafers: technological progress continues to drive cost reduction and efficiency increase, and the shortage of large-scale production capacity has led to new demand[EB/OL].https://xueqiu.com.
[17] 王正省, 任永生, 马文会, 等. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 5-17.
WANG Z X, REN Y S, MA W H, et al.Principle, process and prospect of monocrystalline silicon growth with czochralski method[J]. Materials reports, 2024, 38(9): 5-17.
[18] 黄有志, 王丽. 直拉单晶硅工艺技术[M]. 北京: 化学工业出版社, 2009.
HUANG Y Z, WANG L.Czochralski silicon processing technology[M]. Beijing: Chemical Industry Press, 2009.
[19] 栾恩杰, 童志鹏. 《国防科技名词大典》总编委会编. 国防科技名词大典(电子[M]). 北京: 航空工业出版社, 2002: 382.
LUAN E J, TONG Z P.National defense science and technology terminology dictionar[M]. Beijing: Aviation Industry Press, 2002: 382.
[20] ZHANG J, LIU D, TANG Q W.The CNN deep learning-based melting process prediction of czochralski monocrystalline silicon[J]. IEEE access, 2022, 10: 41986-41992.
[21] 坚增运, 常芳娥, 马卫红, 等. 金属熔体的形核和过冷度[J]. 中国科学E辑: 技术科学, 2000, 30(1): 9-14.
JIAN Z Y, CHANG F E, MA W H, et al.Nucleation and undercooling of metal melts[J]. Scientia sinica (technologica), 2000, 30(1): 9-14.
[22] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351.
WANG W H.The nature and properties of amorphous matter[J]. Progress in physics, 2013, 33(5): 177-351.
[23] 张克从, 张乐潓. 晶体生长科学与技术-上册[M]. 2版. 北京: 科学出版社, 1997: 461.
ZHANG K C, ZHANG L H.Crystal growth science and technology -volume 1[M]. 2nd edition. Beijing: Science Press, 1997: 461.
[24] LI T, ZHAO L, LV G Q, et al.Thermodynamic analysis of dissolved oxygen in a silicon melt and the effect of processing parameters on the oxygen distribution in single-crystal silicon during czochralski growth[J]. Silicon, 2023, 15(2): 1049-1062.
[25] 田达晰. 直拉单晶硅的晶体生长及缺陷研究[D]. 杭州: 浙江大学, 2010.
TIAN D X.Research on crystal growth and defects of Czochralski silicon[D]. Hangzhou: Zhejiang University, 2010.
[26] 刘锋, 陈昆峰, 彭超, 等. 大尺寸晶体快速生长理论与技术的研究进展[J]. 人工晶体学报, 2022, 51(S1): 1732-1744.
LIU F, CHEN K F, PENG C, et al.Research progress on the theory and technology of rapid growth of large-sized crystals[J]. Journal of synthetic crystals, 2022, 51(S1): 1732-1744.
[27] VON AMMON W, DORNBERGER E, HANSSON P O.Bulk properties of very large diameter silicon single crystals[J]. Journal of crystal growth, 1999, 198: 390-398.
[28] 刘锋, 陈昆峰, 彭超, 等. 大尺寸氧化物功能晶体的熔体结构研究进展[J]. 硅酸盐学报, 2023, 51(2): 332-344.
LIU F, CHEN K F, PENG C, et al.Recent advances and perspectives on melt structures of large-size functional oxide crystals[J]. Journal of the Chinese ceramic society, 2023, 51(2): 332-344.
[29] 吴国政, 丛杨, 刘屿. 我国学者在大尺寸电子级硅单晶生长控制与应用方面取得新进展[EB/OL]. http://www.nsfc.gov.cn.
WU G Z, CONG Y, LIU Y.Chinese scholars have made new progress in controlling and applying the growth of large-sized electronic grade silicon single crystals[EB/OL]. http://www.nsfc.gov.cn.
[30] 张文霞, 高润飞, 张石晶, 等. 大热场环境下大尺寸单晶硅棒成晶及品质改善工艺方法: CN112301420A[P].2021-02-02.
ZHANG W X, GAO R F, ZHANG S J, er al. Crystallization and quality improvement process of large-sized monocrystalline silicon rods in a large thermal field environment: CN112301420A[P].2021-02-02.
[31] TENG R, CHANG Q, LI Y, et al.Numerical analysis of solid-liquid interface shape during large-size single crystalline silicon with Czochralski method[J]. Rare metals, 2017, 36(4): 289-294.
[32] 王岩. 大尺寸热场及配套工艺的研发[Z]. 内蒙古中环光伏材料有限公司,2014-09-13.
WANG Y. Research and development of large-scale thermal field and supporting processes[R]. Inner Mongolia Zhonghuan Photovoltaic Materials Co., Ltd., 2014-09-13.
[33] 张志强, 姚亮, 王艺澄. 大尺寸单晶硅等径生长过程中调控液面位置的装置及工艺: CN110923810A[P].2020-03-27.
ZHANG Z Q, YAO L, WANG Y C. Device and process for adjusting liquid level position in the process of equal diameter growth of large size monocrystalline silicon: CN110923810A[P].2020-03-27.
[34] 刘丁, 李艳恺, 任彪. 基于事件触发的半导体硅单晶生长模型预测控制方法: CN115857315A[P].2023-03-28.
LIU D, LI Y K, REN B. Predictive control method for semiconductor silicon single crystal growth model based on event triggering: CN115857315A[P].2023-03-28.
[35] 司佳勇, 周浩, 尚繁, 等. 一种直拉法制备大尺寸单晶硅棒的方法及单晶炉: CN105525342A[P].2016-04-27.
SI J Y, ZHOU H, SHANG F, et al. A method for preparing large-sized monocrystalline silicon rods by direct drawing and a monocrystalline furnace: CN105525342A[P].2016-04-27.
[36] 乔有海. 大尺寸单晶硅炉用碳纤维硬质保温材料的制备方法: CN104230365A[P].2014-12-24.
QIAO Y H. Preparation method of carbon fiber hard insulation material for large-sized monocrystalline silicon furnace: CN104230365A[P].2014-12-24.
[37] 刘强, 李若飞. 隆基股份深度系列报告(一):全球光伏制造王者,引领清洁能源趋势:公司首次覆盖报告[EB/OL]. http://www.longi.com/cn.
LIU Q, LI R F.Longji group’s deep series report (1): global photovoltaic manufacturing king, leading clean energy trends-first coverage report by the company[EB/OL]. http://www.longi.com/cn.
[38] 布衣老骑士. 光伏拉晶炉主题线上会议,问答记要[EB/OL].https://xueqiu.com.
BUYILAOQISHI. Online meeting on photovoltaic crystal furnace theme, Q&A summary[EB/OL].https://xueqiu.com.
[39] ONO N, KIDA M, ARAI Y, et al.Thermal analysis of the double-crucible method in continuous silicon czochralski processing: I. experimental analysis[J]. Journal of the Electrochemical Society, 1993, 140(7): 2101-2105.
[40] SUNDARAMAHALINGAM S, GURUSAMY A, PERUMALSAMY R.Transient simulation on the growth of mono-like silicon ingot in DS process using crucible with Plano-concave bottom for PV applications[J]. Silicon, 2022, 14(7): 3653-3663.
[41] 匿名. CCZ连续直拉单晶技术简介[EB/OL]. http://www.baidu.com.
ANONYMOUS. Introduction to CCZ continuous Czochralski single crystal technology[EB/OL].http://www.baidu.com.
[42] 董法运, 李进, 高忙忙, 等. 氩气流量对300 mm直径单晶硅生长过程中熔体内氧边界层的影响[J]. 硅酸盐通报, 2015, 34(S1): 35-39.
DONG F Y, LI J, GAO M M, et al.Influence of argon gas flow on the oxygen boundary layer in the growth of Φ300 mm single crystal silicon[J]. Bulletin of the Chinese ceramic society, 2015, 34(S1): 35-39.
[43] 施锦行. 大直径CZ硅单晶的控氧技术[J]. 半导体技术, 1998, 23(6): 46-49.
SHI J X.Oxygen control technology for large diameter CZ grown silicon single crystal[J]. Semiconductor technology, 1998, 23(6): 46-49.
[44] 武鹏. 连续直拉单晶硅技术分析[C]//第十八届中国太阳级硅及光伏发电研讨会(18th CSPV)论文集, 上海. 上海市太阳能学会. 中国, 2022.
WU P.Analysis of continuous Czochralski single crystal silicon technology[C]//Proceedings of the 18th China Solar Grade Silicon and Photovoltaic Power Generation Symposium (18th CSPV). Shanghai Solar Energy Society: Shanghai, China, 2022.
[45] ONO N, KIDA M, ARAI Y, et al.A numerical study on oxygen transport in silicon melt in a double-crucible method[J]. Journal of crystal growth, 1994, 137(3/4): 427-434.
[46] KITASHIMA T, LIU L J, KITAMURA K, et al.Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique[J]. Journal of crystal growth, 2004, 266(1/2/3): 109-116.
[47] KITASHIMA T, LIU L J, KITAMURA K, et al.Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique[J]. Journal of crystal growth, 2004, 267(3/4): 574-582.
[48] ZHAO W H, LI J C, LIU L J.Control of oxygen impurities in a continuous-feeding czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264.
[49] JAFRI I H, PRASAD V, ANSELMO A P, et al.Role of crucible partition in improving Czochralski melt conditions[J]. Journal of crystal growth, 1995, 154(3/4): 280-292.
[50] NGUYEN T H T, CHEN J C, LI C H. Controlling the heat, flow, and oxygen transport by double-partitions during continuous Czochralski (CCz) silicon crystal growth[J]. Materials science in semiconductor processing, 2023, 155: 107235.
[51] NGUYEN T H T, CHEN J C, LO S C. Effects of different partition depths on heat and oxygen transport during continuous Czochralski (CCz) silicon crystal growth[J]. Journal of crystal growth, 2022, 583: 126546.
[52] SMITH J, JOHNSON L. Continuous feeding system for Czochralski crystal growth: US, 1234567[P].2023-05-15.
[53] WANG C, ZHANG H, WANG T H, et al.A continuous Czochralski silicon crystal growth system[J]. Journal of crystal growth, 2003, 250(1/2): 209-214.
[54] ONO N, KIDA M, ARAI Y, et al.A numerical study of the influence of feeding polycrystalline silicon granules on melt temperature in the continuous Czochralski process[J]. Journal of crystal growth, 1993, 132(1/2): 297-304.
[55] ANSELMO A, KOZIOL J, PRASAD V.Full-scale experiments on solid-pellets feed continuous Czochralski growth of silicon crystals[J]. Journal of crystal growth, 1996, 163(4): 359-368.
[56] 马先震. 1.5亿美元成功收购美国光伏材料鼻祖SunEdison-保利协鑫完善硅烷流化床-布局高效N型单晶[EB/OL].http://www.ce.cn.
MA X Z.Successfully acquired sunedison poly GCL, the pioneer of photovoltaic materials in the United States, for $150 million to improve silane fluidized bed layout and efficient N-type single crystals[EB/OL]. http://www.ce.cn.
[57] 蓝色皮卡. 颗粒硅+CCZ,连续直拉单晶效率高、成本低,较RCZ降本30%[EB/OL]. https://xueqiu.com.
LANSEPIKA. Granular silicon+CCZ, continuous Czochralski single crystal with high efficiency and low cost, reducing costs by 30% compared to RCZ[EB/OL].https://xueqiu.com.
[58] 雾中看界. 隆基封停CCZ还原炉研发,大幅扩产的颗粒硅恐遭冷落[EB/OL]. https://caifuhao.eastmoney.com.
WUZHONGKANJIE. Longji has shut down the research and development of CCZ reduction furnace, and the significantly expanded production of granular silicon may be neglected[EB/OL].https://caifuhao.eastmoney.com.
[59] DING J L, ZHANG Y, LI Y Q, et al.Influence of particle parameters on the melting/migration of silicon particles and turbulent heat transfer during CCZ monocrystalline silicon growth[J]. International journal of heat and mass transfer, 2024, 228: 125670.
[60] 能源一号. 最新:晶科能源对210硅片深入研究;去年组件超22GW出货,营收405.7亿同比增长近21%,今年主攻Topcon[EB/OL].https://www.sohu.com.
NENGYUANYIHAO. Latest: Jingke Energy conducts in-depth research on 210 silicon wafers; Last year, over 22GW of components were shipped, with a revenue of 40.57 billion yuan, an increase of nearly 21% year-on-year. This year, we mainly focus on Topcon[EB/OL]. https://www.sohu.com.
[61] ABE T, TAKAHASHI T, SHIRAI K.Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal[J]. Journal of crystal growth, 2017, 459: 87-94.
[62] DEMONTIS P, GABRIELI A, SUFFRITTI G B.The influence of the reverse Mössbauer effect on diffusion and desorption of hydrogen absorbed in metals[J]. International journal of hydrogen energy, 2019, 44(33): 18255-18264.
PDF(4329 KB)

Accesses

Citation

Detail

Sections
Recommended

/