STUDY ON FLUTTER LIMIT OF ULTRA-LARGE WIND TURBINE BLADES UNDER ROTOR IMBALANCE LOADS

Tian De, Li Bei, Wu Xiaoxuan, Meng Huiwen, Wang Haodong, Su Yi

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 198-205.

PDF(3903 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3903 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 198-205. DOI: 10.19912/j.0254-0096.tynxb.2023-1751

STUDY ON FLUTTER LIMIT OF ULTRA-LARGE WIND TURBINE BLADES UNDER ROTOR IMBALANCE LOADS

  • Tian De, Li Bei, Wu Xiaoxuan, Meng Huiwen, Wang Haodong, Su Yi
Author information +
History +

Abstract

This study focuses on the IEA Wind 15 MW Reference Wind Turbine and investigates the flutter limit of ultra-large wind turbine blades under imbalanced loads such as wind shear, yaw inflow, and mass imbalance. The results show that under a single unbalonced load, both wind shear and yaw misalignment within ±15° increases the critical flutter speed. Conversely, mass imbalance reduces the critical flutter speed, and the flutter speed is decreased more obviously under heavy mass. When all three imbalanced loads act simultaneously, the critical flutter speed exhibit maximum and minimum values at a shear coefficient of 0.3. The maximum value consistently occurs at a non-negative yaw angle, while the minimum value is observed at a yaw angle of -20°. The impact of mass imbalance on the critical flutter speed is consistent with that of single unbalanced load action. Therefore, it is crucial to consider the combined effects of multiple rotor imbalanced loads, particularly in the unfavorable scenario of heavier blade mass and a yaw angle is-20°, when conducting aeroelastic stability analysis.

Key words

wind turbine blades / flutter / stability / aeroelasticity / rotor imbalance loads

Cite this article

Download Citations
Tian De, Li Bei, Wu Xiaoxuan, Meng Huiwen, Wang Haodong, Su Yi. STUDY ON FLUTTER LIMIT OF ULTRA-LARGE WIND TURBINE BLADES UNDER ROTOR IMBALANCE LOADS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 198-205 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1751

References

[1] GWEC. Global Offshore Wind Report 2021[R]. 2021.
[2] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[3] CHANG L, YU Y J, LIU T R.Aeroelastic flutter and sliding mode control of wind turbine blade[J]. Shock and vibration, 2020, 2020: 1-8.
[4] SHAKYA P, SUNNY M R, MAITI D K.Nonlinear flutter analysis of a bend-twist coupled composite wind turbine blade in time domain[J]. Composite structures, 2022, 284:115216.
[5] HACH O, VERDONCK H, POLMAN J D, et al.Wind turbine stability: comparison of state-of-the-art aeroelastic simulation tools[J]. Journal of physics: conference series, 2020, 1618(5): 052048.
[6] HUA X G, MENG Q S, CHEN B, et al.Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine[J]. Advances in structural engineering, 2020, 23(14): 3037-3047.
[7] HüBNER G R, PINHEIRO H, DE SOUZA C E, et al. Detection of mass imbalance in the rotor of wind turbines using support vector machine[J]. Renewable energy, 2021, 170:49-59.
[8] REZAEIHA A, PEREIRA R, KOTSONIS M.Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine[J]. Renewable energy, 2017, 114: 904-916.
[9] TANG S Z, TIAN D, FANG J J, et al.Individual pitch controller characteristics analysis and optimization under aerodynamic imbalanced loads of wind turbines[J]. Energy reports, 2021, 7: 6489-6500.
[10] 田德, 方建驹, 刘枫, 等. 大型风电机组模型预测独立变桨控制器设计[J]. 太阳能学报, 2022, 43(4): 461-467.
TIAN D, FANG J J, LIU F, et al.Design of model predictive individual pitch controller for large-scale wind turbine[J]. Acta energiae solaris sinica, 2022, 43(4): 461-467.
[11] 马磊明, 肖玲斐, 姜斌. 基于自适应非奇异智能终端滑模观测器的风力机载荷增广预测控制[J]. 太阳能学报, 2022, 43(11): 259-268.
MA L M, XIAO L F, JIANG B.Augmented predictive intelligent control of wind turbine load based on adaptive nonsingular terminal sliding mode observer[J]. Acta energiae solaris sinica, 2022, 43(11): 259-268.
[12] PIRRUNG G R, MADSEN H A, KIM T.The influence of trailed vorticity on flutter speed estimations[J]. Journal of physics: conference series, 2014, 524(1): 012048.
[13] LARSEN T J, HANSEN A M.How 2 HAWC2, the user's manual[R]. Roskilde, Denmark:DTU Wind Energy, 2019.
[14] GAERTNER E, RINKER J, SETHURAMAN L, et al.Definition of the IEA wind 15-megawatt offshore reference wind turbine[R]. National Renewable Energy Laboratory, 2020.
[15] RINKER J, GAERTNER E, ZAHLE F, et al.Comparison of loads from HAWC2 and OpenFAST for the IEA wind 15 MW reference wind turbine[J]. Journal of physics: conference series, 2020, 1618(5): 052052.
[16] 李贝, 田德, 唐世泽, 等. 超大型风电机组叶片颤振分析及参数灵敏度研究[J]. 太阳能学报, 2023, 44(9): 295-301.
LI B, TIAN D, TANG S Z, et al.Flutter analysis and parameter sensitivity study of ultra-large wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(9): 295-301.
[17] EL KHCHINE Y, SRITI M.Tip loss factor effects on aerodynamic performances of horizontal axis wind turbine[J]. Energy procedia, 2017, 118:136-140.
[18] HANSEN M H.A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[R]. Riso National Laboratory, Denmark, 2004.
[19] MADSEN H A, LARSEN T J, PIRRUNG G R, et al.Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact[J]. Wind energy science, 2020, 5(1): 1-27.
[20] KIM T, HANSEN A M, BRANNER K.Development of an anisotropic beam finite element for composite wind turbine blades in multibody system[J]. Renewable energy, 2013, 59: 172-183.
[21] BAK C, ZAHLE F, BITSCHE R, et al.The DTU 10-MW reference wind turbine[R]. Roskilde, Denmark: DTU Wind Energy, 2013.
[22] LIU Y Q, QIAO Y H, HAN S, et al.Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow[J]. Renewable energy, 2021, 172: 882-896.
[23] DAI J C, YANG X, HU W, et al.Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149(APR.15): 684-696.
[24] GRIFFITH D T, CHETAN M.Assessment of flutter prediction and trends in the design of large-scale wind turbine rotor blades[J]. Journal of physics: conference series, 2018, 1037: 042008.
PDF(3903 KB)

Accesses

Citation

Detail

Sections
Recommended

/