STUDY ON EFFECT OF SUBSTRATE TEMPERATURE ON TUNGSTEN OXIDE FILMS BY HOT-WIRE CVD DEPOSITION

Zhang Xu, Guo Cong, Chen Tao, Yu Jian, Tang Shuihua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 335-341.

PDF(3615 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3615 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 335-341. DOI: 10.19912/j.0254-0096.tynxb.2023-1770

STUDY ON EFFECT OF SUBSTRATE TEMPERATURE ON TUNGSTEN OXIDE FILMS BY HOT-WIRE CVD DEPOSITION

  • Zhang Xu, Guo Cong, Chen Tao, Yu Jian, Tang Shuihua
Author information +
History +

Abstract

Tungsten oxide (WOx) thin films were prepared via hot-wire chemical vapor deposition and applied to dopant-free silicon heterojunction solar cells. It was found that substrate temperature played a crucial role during the deposition process. As the substrate temperature increased from room temperature to 200 ℃, the surface particle size of the WOx thin film decreased, and the film became denser. The work function first increased and then rapidly decreased. The transmittance showed no significant change when the temperature lower than 150 ℃, but rapidly decreased as the further increased temperature. By replacing the p-type amorphous silicon layer, it was applied to dopant-free silicon heterojunction solar cells as a hole-selective contact layer. Under the condition of a substrate temperature of 100 ℃, the highest conversion efficiency of 14.63% was achieved at the substrate temperature of 100 ℃. This work demonstrated the feasibility and great potential of preparing WOx by hot-wire chemical vapor deposition for high-efficiency dopant-free silicon heterojunction solar cells.

Key words

crystalline silicon solar cells / tungsten compounds / thin films / chemical vapor deposition / temperature / substrate

Cite this article

Download Citations
Zhang Xu, Guo Cong, Chen Tao, Yu Jian, Tang Shuihua. STUDY ON EFFECT OF SUBSTRATE TEMPERATURE ON TUNGSTEN OXIDE FILMS BY HOT-WIRE CVD DEPOSITION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 335-341 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1770

References

[1] MEYER J, HAMWI S, KRÖGER M, et al. Transition metal oxides for organic electronics: energetics, device physics and applications[J]. Advanced materials, 2012, 24(40): 5408-5427.
[2] EZE V O, SEIKE Y, MORI T.Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers[J]. Organic electronics, 2017, 46: 253-262.
[3] LU C J, RUSLI, PRAKOSO A B, et al. Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application[J]. Materials chemistry and physics, 2021, 273: 125101.
[4] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[5] CAO L Q, PROCEL P, ALCAÑIZ A, et al. Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface[J]. Progress in photovoltaics: research and applications, 2023, 31(12): 1245-1254.
[6] BULLOCK J, CUEVAS A, ALLEN T, et al.Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells[J]. Applied physics letters, 2014, 105(23): 232109.
[7] KUMAR M, CHO E C, PRODANOV M F, et al.MoOx work function, interface structure, and thermal stability analysis of ITO/MoOx/a-Si(i) stacks for hole-selective silicon heterojunction solar cells[J]. Applied surface science, 2021, 553: 149552.
[8] 谷书辉, 李宁, 黄志平, 等. 衬底温度对MoOx空穴传输层的影响研究[J]. 太阳能学报, 2020, 41(7): 136-141.
GU S H, LI N, HUANG Z P, et al.Study of substrate temperature effecting on MoOx hole transnission layer[J]. Acta energiae solaris sinica, 2020, 41(7):136-141.
[9] LUO Z T, YANG C, CHEN X H, et al.Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT: PSS[J]. Journal of materiomics, 2023, 9(3): 438-446.
[10] LIU C, ZHANG L, YU G Q, et al.Tuning oxygen vacancies in vanadium-doped molybdenum oxide for silicon solar cells with hole selective contact[J]. Materials science in semiconductor processing, 2022, 146: 106687.
[11] LEE D Y, CHO S P, NA S I, et al.ITO-free polymer solar cells with vanadium oxide hole transport layer[J]. Journal of industrial and engineering chemistry, 2017, 45: 1-4.
[12] BIVOUR M, TEMMLER J, STEINKEMPER H, et al.Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells[J]. Solar energy materials and solar cells, 2015, 142: 34-41.
[13] GERLING L G, MAHATO S, MORALES-VILCHES A, et al.Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells[J]. Solar energy materials and solar cells, 2016, 145: 109-115.
[14] WERNER J, GEISSBÜHLER J, DABIRIAN A, et al. Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells[J]. ACS applied materials & interfaces, 2016, 8(27): 17260-17267.
[15] ESSIG S, DRÉON J, RUCAVADO E, et al. Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics[J]. Solar RRL, 2018, 2(4): 1700227.
[16] ZHANG T, LEE C Y, GONG B, et al.In situ X-ray photoelectron emission analysis of the thermal stability of atomic layer deposited WOx as hole-selective contacts for Si solar cells[J]. Journal of vacuum science & technology A: vacuum, surfaces, and films, 2018, 36(3).
[17] MARDARE C C, HASSEL A W.Review on the versatility of tungsten oxide coatings[J]. physica status solidi (a), 2019, 216(12): 1900047.
[18] HUANG K, PAN Q T, YANG F, et al.Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries[J]. Journal of physics D: applied physics, 2008, 41(15): 155417.
[19] MAHJABIN S, HAQUE M M, SOBAYEL K, et al.Investigation of morphological, optical, and dielectric properties of RF sputtered WOx thin films for optoelectronic applications[J]. Nanomaterials, 2022, 12(19): 3467.
[20] PARK E J, DOLLINGER A, KIM I H, et al.Fabrication of a transparent and super-hydrophilic window by depositing WOx nanoparticles via magnetron sputtering onto a glass[J]. Surfaces and interfaces, 2017, 8: 8-14.
[21] WHITE C M, GILLASPIE D T, WHITNEY E, et al.Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition[J]. Thin solid films, 2009, 517(12): 3596-3599.
[22] KOSTIS I, VOURDAS N, VASILOPOULOU M, et al.Formation of stoichiometric, sub-stoichiometric undoped and hydrogen doped tungsten oxide films, enabled by pulsed introduction of O2 or H2 during hot-wire vapor deposition[J]. Thin solid films, 2013, 537: 124-130.
[23] HOUWELING Z S, GEUS J W, DE JONG M, et al.Growth process conditions of tungsten oxide thin films using hot-wire chemical vapor deposition[J]. Materials chemistry and physics, 2011, 131(1/2): 375-386.
[24] THANGALA J, VADDIRAJU S, MALHOTRA S, et al.A hot-wire chemical vapor deposition (HWCVD) method for metal oxide and their alloy nanowire arrays[J]. Thin solid films, 2009, 517(12): 3600-3605.
[25] DILLON A C, RILEY L A, JUNG Y S, et al.HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes[J]. Thin solid films, 2011, 519(14): 4495-4497.
[26] SITTINGER V, HÖFER M, HARIG T, et al. Optical grade SiO2 films prepared by HWCVD[J]. Surface and coatings technology, 2018, 336: 61-66.
[27] BORGHEI S M, KAMALI S, SHAKIB M H, et al.Filament temperature dependence of the nano-size MgO particles prepared by the HWCVD technique[J]. Journal of fusion energy, 2011, 30(5): 433-436.
[28] JUSTIANTO M, HARIG T, HÖFER M, et al. Silicon films for heterojunction solar cells by hot-wire CVD[C]//15th International Conference on Concentrator Photovoltaic Systems(CPV-15). Fes, Morocco, 2019.
[29] SCHROPP R E I, VAN DER WERF C H M, VERLAAN V, et al. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by hot wire chemical vapor deposition[J]. Thin solid films, 2009, 517(10): 3039-3042.
[30] SCHROPP R E I, NISHIZAKI S, HOUWELING Z S, et al. All hot wire CVD TFTs with high deposition rate silicon nitride (3 nm/s)[J]. Solid-state electronics, 2008, 52(3): 427-431.
[31] CHEN G J, LIN C M, SHIH Y H, et al.The microstructures and characteristics of NiO films: effects of substrate temperature[J]. Micromachines, 2022, 13(11): 1940.
[32] AMROUN M N, KHADRAOUI M.Effect of substrate temperature on the properties of SnS2 thin films[J]. Optik, 2019, 184: 16-27.
[33] BAYU AJI L B, SHIN S J, BAE J H, et al. Effect of substrate temperature on sputter-deposited boron carbide films[J]. Journal of applied physics, 2022, 131(7): 075304.
[34] PAL S, JACOB C.The influence of substrate temperature variation on tungsten oxide thin film growth in an HFCVD system[J]. Applied surface science, 2007, 253(6): 3317-3325.
[35] GUO C, LI J J, LIU R, et al.In-situ deposition of tungsten oxide hole-contact by hot-wire CVD and its application in dopant-free heterojunction solar cells[J]. Semiconductor science technology, 2023, 38(1): 015007.
[36] DAO V A, TRINH T T, KIM S, et al.Carrier transport mechanisms of reactively direct current magnetron sputtered tungsten oxide/n-type crystalline silicon heterojunction[J]. Journal of power sources, 2020, 472: 228460.
[37] ZHANG T, LEE C Y, GONG B, et al.Thermal stability analysis of WOx and MoOx as hole-selective contacts for Si solar cells using in situ XPS[C]//The 8th International Conference on Crystalline Sillion Photovoltaics, Lausanne, Switzerland, 2018.
[38] CHENG Y, HUANG X Z, DU Z J, et al.Effect of sputtering power on the structure and optical band gap of SiC thin films[J]. Optical materials, 2017, 73: 723-728.
[39] OH H, CHO K, KIM S.Effect of physical densification on sub-gap density of states in amorphous InGaZnO thin films[J]. Superlattices and microstructures, 2018, 121: 33-37.
[40] AHANGARKANI M.In-situ formation of tungsten nano-particles by oxidation-reduction mechanism-new approach in sintering activating by means of oxide nanostructures[J]. Materials letters, 2020, 261: 127128.
PDF(3615 KB)

Accesses

Citation

Detail

Sections
Recommended

/