TORSIONAL LOAD BEARING CAPACITY OF CIRCUMFERENTIAL DRY JOINTS IN PREFABRICATED CONCRETE WIND TURBINE TOWER

Li Jinwei, Chen Junling, Lin Changfeng, Lin Wenmin, Wang Zhicheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 538-545.

PDF(2693 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2693 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 538-545. DOI: 10.19912/j.0254-0096.tynxb.2023-1771

TORSIONAL LOAD BEARING CAPACITY OF CIRCUMFERENTIAL DRY JOINTS IN PREFABRICATED CONCRETE WIND TURBINE TOWER

  • Li Jinwei, Chen Junling, Lin Changfeng, Lin Wenmin, Wang Zhicheng
Author information +
History +

Abstract

The concrete section of one prefabricated steel-concrete wind turbine tower is usually fabricated segmentally in the factory and assembled on site by means of circumferential dry connection between segments. In this paper, according to the structural characteristics of circumferential joints between segments, the torsional load capacity of the circumferential joints between concrete segments under the interaction of vertical force and bending moment is derived as one integral expression and calculated by Python programming. The accuracy of the theoretical integral equation and the Python program is verified by comparing the results of two sets of ABAQUS refined finite element simulation with the published test results of the torsional load capacity for the circumferential joints between aluminum tubes. Finally, the torsional load capacities of 15 concrete segment cases with typical sizes and vertical forces are carried out by the proposed method. A 6-parameter model predicting the torsional load bearing capacity of the circumferential joints is proposed, and the values of these parameters are determined by least squares method. The design formula is proposed for the torsional load bearing capacity of the circumferential joints between concrete segments in prefabricated steel-concrete wind turbine towers.

Key words

wind turbines / towers / torsion / bearing capacity / dry joints / design method

Cite this article

Download Citations
Li Jinwei, Chen Junling, Lin Changfeng, Lin Wenmin, Wang Zhicheng. TORSIONAL LOAD BEARING CAPACITY OF CIRCUMFERENTIAL DRY JOINTS IN PREFABRICATED CONCRETE WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 538-545 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1771

References

[1] SEIDL G, HIERL M, BREU M, et al.Segmentbrücke greißelbach als stahlverbundbrücke ohne abdichtung und asphalt[J]. Stahlbau, 2016, 85(2): 126-136.
[2] RETTINGER M, HÜCKLER A, SCHLAICH M. Technologien und entwicklungen im segmentbrückenbau[J]. Beton-und stahlbetonbau, 2021, 116(S2): 12-23.
[3] VON DER HAAR C, MARX S. Design aspects of concrete towers for wind turbines[J]. Journal of the South African institution of civil engineering, 2015, 57(4): 30-37.
[4] 陈俊岭, 高洁, 赵邦州, 等. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报, 2023, 44(3): 225-231.
CHEN J L, GAO J, ZHAO B Z, et al.Comprehensive analysis of dynamic response of steel and steel-concrete combined wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(3): 225-231.
[5] 师振贵, 王云超, 黄赐荣, 等. 干式连接装配式风电混塔非线性特征研究[J]. 太阳能学报, 2024, 45(6): 564-571.
SHI Z G, WANG Y C, HUANG C R, et al.Research on nonlinear characteristics of dry-connected prefabricated wind turbine hybrid tower[J]. Acta energiae solaris sinica, 2024, 45(6): 564-571.
[6] 宋欢, 丛欧, 郝华庚, 等. 预制混凝土塔架水平缝连接节点受力性能研究[J]. 建筑结构, 2016, 46(14): 16-20.
SONG H, CONG O, HAO H G, et al.Research on mechanical behaviors of horizontal joint connection of prefabricated concrete towers[J]. Building structure, 2016, 46(14): 16-20.
[7] GRÜNBERG J, GÖHLMANN J. Concrete structures for wind turbines[M]. Berlin: Wiley, 2013.
[8] KANG C J, HARTWIG S, MARX S.Behavior of externally prestressed segmental towers’ dry joint under torsion effects[J]. Structural concrete, 2019, 20(4): 1350-1357.
[9] HARTWIG S, MARX S.Zum Torsionstragverhalten extern vorgespannter Kreissegmente mit trockenen Fugen[J]. Beton- und stahlbetonbau, 2017, 112(11): 740-746.
[10] MOHAMAD M E, IBRAHIM I S, ABDULLAH R, et al.Friction and cohesion coefficients of composite concrete-to-concrete bond[J]. Cement and concrete composites, 2015, 56: 1-14.
[11] HARTWIG S, MARX S.Modellentwicklung torsionsbeanspruchter kreisringsegmente mit trockenen fugen[J]. Beton- und stahlbetonbau, 2021, 116(5): 370-377.
[12] HARTWIG S, MIDDENDORF J.Erweitertes torsionstragmodell extern vorgespannter kreisringsegmente mit trockenen fugen: interaktionsmodell zur bestimmung der torsionstragfähigkeit unter querkraft und biegung[J]. Beton-und stahlbetonbau, 2021, 116(8): 632-640.
[13] LOH L, GARG A.Torsionstragverhalten von betonhohlquerschnitten in geschlossenen und klaffenden segmentfugen[J]. Beton-und stahlbetonbau, 2020, 115(11): 838-847.
[14] LOH L, GARG A.Torsionstragverhalten von betonhohlquerschnitten in geschlossenen und klaffenden segmentfugen-teil 2: die umlagerung der torsionsschubspannungen[J]. Beton-und stahlbetonbau. 2021, 116(11): 871-880.
[15] KLEIN F, FÜRLL F, BETZ T, et al. Experimental study on the joint bearing behavior of segmented tower structures subjected to normal and bending shear loads[J]. Structural concrete, 2022, 23(3): 1370-1384.
[16] The International Federation for Structural Concrete. Fib model code for concrete structures 2010[S]. Berlin: Wiley, 2013.
PDF(2693 KB)

Accesses

Citation

Detail

Sections
Recommended

/