STUDY ON NATURAL FREQUENCY OF MONOPILE OFFSHORE WIND TURBINE CONSIDERING LONG TERM CYCLIC DEGRADATION EFFECT

Cheng Xinglei, Xing Jianyu, Liu Ju, Wang Piguang, Sun Xiaohan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 559-566.

PDF(1020 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1020 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 559-566. DOI: 10.19912/j.0254-0096.tynxb.2023-1777

STUDY ON NATURAL FREQUENCY OF MONOPILE OFFSHORE WIND TURBINE CONSIDERING LONG TERM CYCLIC DEGRADATION EFFECT

  • Cheng Xinglei1, Xing Jianyu1, Liu Ju1, Wang Piguang2, Sun Xiaohan1
Author information +
History +

Abstract

This paper establishes a monopile foundation model for offshore wind turbines using the finite element software ABAQUS, combined with the USEFLD subroutine to calculate soil degradation, and uses a simplified spring model to calculate the natural frequency of the monopile wind turbine system. The effects of the number of cyclic load cycles, the magnitude of cyclic load, and the size of the monopile on the natural frequency of the wind turbine system are discussed. The research results show that the natural frequency of the monopile foundation wind turbine system decreases with the increase in the number of cyclic load cycles. Moreover, the greater the cyclic load level, the more significant the degradation of the wind turbine system’s natural frequency. For the wind turbine size and soil conditions considered in this study, after 107 cycles of cyclic loading, the wind turbine’s natural frequency can decrease to as low as 0.954 times its initial value, but it still remains within the 1P to 3P frequency range. Increasing the monopile length, diameter, and wall thickness can reduce the long-term degradation of the monopile wind turbine system’s natural frequency. Under the condition of the same steel usage, increasing the pile diameter is more effective in mitigating the natural frequency degradation of the wind turbine system compared to increasing the pile length and wall thickness, thus ensuring the stable operation of the wind turbine system. ”

Key words

offshore wind turbines / natural frequencies / monopile foundation / degradation / cumulative deformation / cyclic load

Cite this article

Download Citations
Cheng Xinglei, Xing Jianyu, Liu Ju, Wang Piguang, Sun Xiaohan. STUDY ON NATURAL FREQUENCY OF MONOPILE OFFSHORE WIND TURBINE CONSIDERING LONG TERM CYCLIC DEGRADATION EFFECT[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 559-566 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1777

References

[1] CHENG X L, WANG T J, ZHANG J X, et al.Finite element analysis of cyclic lateral responses for large diameter monopiles in clays under different loading patterns[J]. Computers and geotechnics, 2021, 134: 104104.
[2] Det Norske Veritas.Offshore standard: Design of offshore wind turbine structures: DNV-OS-J101[S]. Oslo: DNV, 2013: 9-11.
[3] ANDERSEN L V, VAHDATIRAD M J, SICHANI M T, et al.Natural frequencies of wind turbines on monopile foundations in clayey soils—a probabilistic approach[J]. Computers and geotechnics, 2012, 43: 1-11.
[4] MYERS A T, ARWADE S R, VALAMANESH V, et al.Strength, stiffness, resonance and the design of offshore wind turbine monopiles[J]. Engineering structures, 2015, 100: 332-341.
[5] CARSWELL W, ARWADE S R, DEGROOT D J, et al.Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay[J]. Renewable energy, 2016, 97: 319-330.
[6] ALKHOURY P, ABDUL-HAMID S, REY V, et al.A full three‐dimensional model for the estimation of the natural frequencies of an offshore wind turbine in sand[J]. Wind energy, 2020, 24(7): 669-719.
[7] ALEXANDER N A.Estimating the nonlinear resonant frequency of a single pile in nonlinear soil[J]. Journal of sound and vibration, 2010, 329(8): 1137-1153.
[8] BERALDO H D C, FRANZINI G R. A nonlinear mathematical model for dynamic analyses of a cantilevered beam with a tip-mass under support excitation[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2020, 42(1): 1-14.
[9] ARANY L, BHATTACHARYA S, MACDONALD J H G, et al. Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil dynamics and earthquake engineering, 2016, 83: 18-32.
[10] ARANY L, BHATTACHARYA S, ADHIKARI S, et al.An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models[J]. Soil dynamics and earthquake engineering, 2015, 74: 40-45.
[11] BOUZID D A, BHATTACHARYA S, OTSMANE L.Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction[J]. Journal of rock mechanics and geotechnical engineering, 2018, 10(2): 141-154.
[12] DARVISHI-ALAMOUTI S, BAHAARI M R, MORADI M.Natural frequency of offshore wind turbines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution[J]. Applied ocean research, 2017, 68: 91-102.
[13] 王丕光, 刘晶波, 赵密. 运行状态下海上单桩风机系统自振频率分析[J]. 地震工程学报, 2021, 43(3): 704-709.
WANG P G, LIU J B, ZHAO M.Effect of operating state on the natural frequency of an offshore wind turbine founded on monopiles[J]. China earthquake engineering journal, 2021, 43(3): 704-709.
[14] 刘润, 黄旋智, 袁宇, 等. 土体弱化对海上风电单桩基础的影响研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 56-63.
LIU R, HUANG X Z, YUAN Y, et al.Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard control in tunnelling and underground engineering, 2019, 1(4): 56-63.
[15] 刘润, 苏春阳, 李成凤, 等. 海上风电桩基础打桩过程中桩周土强度弱化模型试验研究[J]. 太阳能学报, 2024, 45(1): 242-250.
LIU R, SU C Y, LI C F, et al.Model test study on strength weakening of soil around piles during piling of offshore wind power pile foundation[J]. Acta energiae solaris sinica, 2024, 45(1): 242-250.
[16] 马宏旺, 陈龙珠, 刘桦, 等. 海上风电单桩支撑结构第一自振频率分析研究[J]. 特种结构, 2014, 31(1): 109-113.
MA H W, CHEN L Z, LIU H, et al.A numerical study of the first natural frequency of offshore wind turbine monopile supporting structure foundation[J]. Special structures, 2014, 31(1): 109-113.
[17] 杨少磊, 马宏旺. 考虑冲刷情况下海上风电单桩基础优化设计研究[J]. 海洋技术学报, 2018, 37(1): 74-80.
YANG S L, MA H W.Study on the optimum geometry of offshore wind turbine monopiles unprotected against scour[J]. Journal of ocean technology, 2018, 37(1): 74-80.
[18] 孙毅龙, 许成顺, 席仁强, 等. 长期水平荷载对单桩式海上风机结构自振频率的影响分析[J]. 振动与冲击, 2023, 42(2): 108-115, 138.
SUN Y L, XU C S, XI R Q, et al.Effect of long-term horizontal load on the natural frequency of monopile supported offshore wind turbine structures[J]. Journal of vibration and shock, 2023, 42(2): 108-115, 138.
[19] 许成顺, 孙毅龙, 翟恩地, 等. 海上风电单桩基础自振频率及参数影响分析[J]. 太阳能学报, 2020, 41(12): 297-304.
XU C S, SUN Y L, ZHAI E D, et al.Offshore turbine monopile foundation natural frequency and parameter impact analysis[J]. Acta energiae solaris sinica, 2020, 41(12): 297-304.
[20] CARDONA-MORALES, SIERRA-ALONSO E F, CASTELLANOS-DOMÍNGUEZ. Identification of wind turbine natural frequencies using narrow-band decomposition methods[J]. Insight-non-destructive testing and condition monitoring, 2013, 55(8): 433-437.
[21] 杨春宝, 王睿, 张建民. 单桩基础型近海风机系统自振频率实用计算方法[J]. 工程力学, 2018, 35(4): 219-225.
YANG C B, WANG R, ZHANG J M.Numerical method for calculating system fundamental frequencies of offshore wind turbines with monopile foundations[J]. Engineering mechanics, 2018, 35(4): 219-225.
[22] 陈俊岭, 赵邦州, 阳荣昌. 基于FAST的风电机组塔架耦合振动研究[J]. 太阳能学报, 2023, 44(10): 353-361.
CHEN J L, ZHAO B Z, YANG R C.Research on coupling vibration of wind turbine tower based on fast[J]. Acta energiae solaris sinica, 2023, 44(10): 353-361.
[23] 程星磊, 王建华. 考虑循环软化特性的饱和软土弹塑性本构关系研究[J]. 岩土力学, 2015, 36(3): 786-794.
CHENG X L, WANG J H.Research on elastoplastic constitutive relation for soft clay considering cyclic softening[J]. Rock and soil mechanics, 2015, 36(3): 786-794.
[24] JALBI S, SHADLOU M, BHATTACHARYA S.Impedance functions for rigid skirted caissons supporting offshore wind turbines[J]. Ocean engineering, 2018, 150: 21-35.
[25] PABLO C.Pile foundations for offshore wind turbines: numerical and experimental investigations on the behaviour under short term and long-term cyclic loading[D]. Berlin: Technische Universität Berlin, 2011.
[26] 汪明元, 李娜, 程星磊, 等. 软黏土中张紧式吸力桶基础循环弱化过程分析[J]. 太阳能学报, 2023, 44(11):341-349.
WANG M Y, LI N, CHENG X L, et al.Analysls of cyclic degradation process of tensioned suction bucket foundations in soft clays[J]. Acta energiae solaris sinica, 2023, 44(11): 341-349.
[27] KIM S R, HUNG L C, OH M.Group effect on bearing capacities of tripod bucket foundations in undrained clay[J]. Ocean engineering, 2014, 79: 1-9.
PDF(1020 KB)

Accesses

Citation

Detail

Sections
Recommended

/