ULTRA-SHORT-TERM IRRADIANCE PREDICTION BASED ON CLOUD IMAGES PHASE CORRELATION AND LOW-RANK FEATURE EXTRACTION

Guo Jiqiang, Xu Xudong, Zhang Shuai, Ren Mifeng, Wang Fang, Yan Gaowei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 494-503.

PDF(3839 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3839 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 494-503. DOI: 10.19912/j.0254-0096.tynxb.2023-1799

ULTRA-SHORT-TERM IRRADIANCE PREDICTION BASED ON CLOUD IMAGES PHASE CORRELATION AND LOW-RANK FEATURE EXTRACTION

  • Guo Jiqiang1, Xu Xudong2, Zhang Shuai2, Ren Mifeng1, Wang Fang1, Yan Gaowei1
Author information +
History +

Abstract

Aiming at the direct impact of dynamic changes of the clouds on irradiance, this paper obtains the cloud dynamic information matrix (DIM) from continuous ground-based cloud images based on the Fourier phase correlation (PC) theory. To minimize the effects on the model led by noise and redundant information, a low-rank matrix feature extraction (LMFE) model is constructed as an extraction module (EM) to extract valid information from the DIM productively. EM obtains the optimal feature extraction matrix W and bias terms b through iteration. Simultaneously, the regression module (RM) is constructed based on the bidirectional gated recurrent unit (Bi-GRU), where RM shares EM outputs W and b, and the valid information extracted from the cloud images is combined with the historical irradiance sequence as input to achieve multi-step regression prediction of irradiance. The experimental simulation of the actual collected data demonstrates that the prediction method can effectively improve the irradiance prediction accuracy.

Key words

solar radiation / forecasting / feature extraction / image correlation / neural networks

Cite this article

Download Citations
Guo Jiqiang, Xu Xudong, Zhang Shuai, Ren Mifeng, Wang Fang, Yan Gaowei. ULTRA-SHORT-TERM IRRADIANCE PREDICTION BASED ON CLOUD IMAGES PHASE CORRELATION AND LOW-RANK FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 494-503 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1799

References

[1] VERBOIS H, HUVA R, RUSYDI A, et al.Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning[J]. Solar energy, 2018, 162: 265-277.
[2] 吴凌霄, 王一楠, 旺堆, 等. 西藏羊八井地区太阳短波辐照度特征及其短期预测模型对比分析[J]. 地球物理学报, 2023, 66(8): 3144-3156.
WU L X, WANG Y N, WANGDUI, et al. Study on the characteristics of solar shortwave irradiance and comparative analysis of short-term irradiance prediction of Yangbajing, Tibet[J]. Chinese journal of geophysics, 2023, 66(8): 3144-3156.
[3] 张成, 白建波, 兰康, 等. 基于数据挖掘和遗传小波神经网络的光伏电站发电量预测[J]. 太阳能学报, 2021, 42(3): 375-382.
ZHANG C, BAI J B, LAN K, et al.Photovoltaic power generation prediction based on data mining and genetic wavelet neural network[J]. Acta energiae solaris sinica, 2021, 42(3): 375-382.
[4] SI Z Y, YANG M, YU Y X, et al.Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied energy, 2021, 302: 117514.
[5] 余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20): 6989-7003.
YU G Z, LU L, TANG B, et al.An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7003.
[6] 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48(8): 3271-3281.
ZHANG Q S, WANG L J, HAO Y, et al.Ultra-short-term solar irradiance prediction of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High voltage engineering, 2022, 48(8): 3271-3281.
[7] 张臻, 陈天鹏, 王磊, 等. 基于地基云图的超短期太阳辐照预测方法与装置研究[J]. 太阳能学报, 2023, 44(1): 133-140.
ZHANG Z, CHEN T P, WANG L, et al.Research on ultra-short-term solar irradiance prediction method and devicebased on ground-based cloud images[J]. Acta energiae solaris sinica, 2023, 44(1): 133-140.
[8] DONG Z B, YANG D Z, REINDL T, et al.Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics[J]. Energy conversion and management, 2014, 79: 66-73.
[9] PALETTA Q, ARBOD G, LASENBY J.Omnivision forecasting: combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions[J]. Applied energy, 2023, 336: 120818.
[10] FU C L, CHENG H Y.Predicting solar irradiance with all-sky image features via regression[J]. Solar energy, 2013, 97: 537-550.
[11] CHENG H Y, YU C C.Multi-model solar irradiance prediction based on automatic cloud classification[J]. Energy, 2015, 91: 579-587.
[12] WANG Z J, WANG L, HUANG C, et al.A hybrid ensemble learning model for short-term solar irradiance forecasting using historical observations and sky images[J]. IEEE transactions on industry applications, 2023, 59(2): 2041-2049.
[13] YANG H, WANG L, HUANG C, et al.3D-CNN-based sky image feature extraction for short-term global horizontal irradiance forecasting[J]. Water, 2021, 13(13): 1773.
[14] 钟振兴, 马晓波, 安巍. 基于地基云图与气象数据的辐照度轻量化预测[J]. 东北电力大学学报, 2021, 41(1): 24-30.
ZHONG Z X, MA X B, AN W.A lightweight solar irradiance prediction model based on ground-based cloud images and meteorological data[J]. Journal of Northeast Electric Power University, 2021, 41(1): 24-30.
[15] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[16] 柴闵康, 夏飞, 张浩, 等. 基于云图特征自识别的光伏超短期预测模型[J]. 电网技术, 2021, 45(3): 1023-1035.
CHAI M K, XIA F, ZHANG H, et al.Ultra-short-term prediction of self-identifying photovoltaic based on sky cloud chart[J]. Power system technology, 2021, 45(3): 1023-1035.
[17] WEN H R, DU Y, CHEN X Y, et al.Deep learning based multistep solar forecasting for PV ramp-rate control using sky images[J]. IEEE transactions on industrial informatics, 2021, 17(2): 1397-1406.
[18] BERNECKER D, RIESS C, ANGELOPOULOU E, et al.Continuous short-term irradiance forecasts using sky images[J]. Solar energy, 2014, 110: 303-315.
[19] 蒋俊霞, 高晓清, 吕清泉, 等. 基于地基云图的云跟踪与太阳辐照度超短期预报方法研究[J]. 太阳能学报, 2020, 41(5): 351-358.
JIANG J X, GAO X Q, LYU Q Q, et al.Study on cloud tracking and solar irradiance ultra-short-term forecasting based on TSI images[J]. Acta energiae solaris sinica, 2020, 41(5): 351-358.
[20] 刘翼飞, 崔承刚. 基于地基云图云量特征的光伏发电功率区间预测[J]. 南方电网技术, 2023, 17(2): 92-100.
LIU Y F, CUI C G.Interval prediction for short-term solar power based on cloud features of ground-based cloud images[J]. Southern power system technology, 2023, 17(2): 92-100.
[21] 王育飞, 郝德扬, 薛花, 等. 计及云图和混沌特性的光伏功率组合预测方法[J]. 太阳能学报, 2023, 44(12): 74-81.
WANG Y F, HAO D Y, XUE H, et al.Combined forecasting approach of photovoltaic power based on cloud images and chaotic characteristics[J]. Acta energiae solaris sinica, 2023, 44(12): 74-81.
[22] 王飞, 甄钊, 米增强, 等. 基于相位相关的天空图像云团运动速度计算方法研究[J]. 太阳能学报, 2016, 37(10): 2539-2546.
WANG F, ZHEN Z, MI Z Q, et al.Cloud velocity calculation method of sky images based on Fourier phase correlation theory[J]. Acta energiae solaris sinica, 2016, 37(10): 2539-2546.
[23] ZHEN Z, XUAN Z M, WANG F, et al.Image phase shift invariance based multi-transform-fusion method for cloud motion displacement calculation using sky images[J]. Energy conversion and management, 2019, 197: 111853.
[24] ZHEN Z, SUN Y J, WANG F, et al.A cloud displacement estimation approach for sky images based on phase correlation theory[C]//2016 IEEE International Conference on Power System Technology (POWERCON). Wollongong, Australia, 2016: 1-6.
[25] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[26] ZHOU J H, ZHANG Q, ZENG S N, et al.Latent linear discriminant analysis for feature extraction via isometric structural learning[J]. Pattern recognition, 2024, 149: 110218.
[27] 黄冬梅, 张晓桐, 张明华, 等. 全局判别与局部稀疏保持HSI半监督特征提取[J]. 计算机工程与应用, 2019, 55(20): 184-191.
HUANG D M, ZHANG X T, ZHANG M H, et al.Global discriminant and local sparse preserving semi-supervised feature extraction for HSI[J]. Computer engineering and applications, 2019, 55(20): 184-191.
[28] 杨利锋, 林大华, 邓振云, 等. 低秩特征选择多输出回归算法[J]. 计算机工程与应用, 2017, 53(20): 116-121.
YANG L F, LIN D H, DENG Z Y, et al.Low-rank feature selection for multiple-output regression algorithm[J]. Computer engineering and applications, 2017, 53(20): 116-121.
[29] YUAN H L, LI J Y, LAI L L, et al.Low-rank matrix regression for image feature extraction and feature selection[J]. Information sciences, 2020, 522: 214-226.
[30] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[31] PEDRO H T C, LARSON D P, COIMBRA C F M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods[J]. 2019, 11(3): 036102.
[32] PARK S, KIM Y, FERRIER N J, et al.Prediction of solar irradiance and photovoltaic solar energy product based on cloud coverage estimation using machine learning methods[J]. Atmosphere, 2021, 12(3): 395.
[33] WEN H R, DU Y, LIM E G, et al.A solar forecasting framework based on federated learning and distributed computing[J]. Building and environment, 2022, 225: 109556.
PDF(3839 KB)

Accesses

Citation

Detail

Sections
Recommended

/