SLIDING MODE VARIABLE STRUCTURE CONTROL STRATEGY OF PV MPPT BASED ON I-V CHARACTERISTICS

Sun Tao, Ge Qiang, Li Juan, Wang Lu, Wang Bozhao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 357-364.

PDF(3258 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3258 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 357-364. DOI: 10.19912/j.0254-0096.tynxb.2023-1814

SLIDING MODE VARIABLE STRUCTURE CONTROL STRATEGY OF PV MPPT BASED ON I-V CHARACTERISTICS

  • Sun Tao, Ge Qiang, Li Juan, Wang Lu, Wang Bozhao
Author information +
History +

Abstract

Aiming at the problem that the traditional maximum power point tracking algorithm in photovoltaic (PV) power generation system is easy to fall into the local power peak under shading, a sliding mode variable structure/transient scanning composite MPPT algorithm is proposed. Based on the I-V characteristic curve of solar cells under shading, the instantaneous power of the system is scanned from open-circuit to short-circuit process, and the global power peak is compared and derived in real time. The global power peak is tracked by the sliding mode variable structure control algorithm, which achieves the power output with high tracking speed and high control accuracy. Finally, simulation comparisons are made in Matlab according to different shading conditions, and a photovoltaic experimental platform is constructed to verify that the composite algorithm does not misjudge the power peak and significantly improves the system's response speed and transmission efficiency compared with the traditional control algorithm and a single sliding mode controller.

Key words

solar cells / maximum power point trackers / sliding mode control / shadow shading / transient scanning

Cite this article

Download Citations
Sun Tao, Ge Qiang, Li Juan, Wang Lu, Wang Bozhao. SLIDING MODE VARIABLE STRUCTURE CONTROL STRATEGY OF PV MPPT BASED ON I-V CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 357-364 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1814

References

[1] 李志军, 张奕楠, 王丽娟, 等. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229.
LI Z J, ZHANG Y N, WANG L J, et al.Study of photovoltaic multimodal maximum power point tracking based on improved quantum particle swarm optmization[J]. Acta energiae solaris sinica, 2021, 42(5): 221-229.
[2] RAKHSHAN M, VAFAMAND N, KHOOBAN M H, et al.Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 6(1): 292-299.
[3] JYOTHY L P N, SINDHU M R. An artificial neural network based MPPT algorithm for solar PV system[C]//2018 4th International Conference on Electrical Energy Systems (ICEES). Chennai, India, 2018: 375-380.
[4] XU C X, ITAKO K, KUDOH T, et al.Proposal for an active PV array to improve system efficiency during partial shading[J]. IEEE access, 2021, 9: 143423-143433.
[5] YANG S, ITAKO K, KUDOH T, et al.Monitoring and suppression of the typical hot-spot phenomenon resulting from low-resistance defects in a PV string[J]. IEEE journal of photovoltaics, 2018, 8(6): 1809-1817.
[6] 花赟昊, 朱武, 靳一奇, 等. 基于自适应变异粒子群算法的光伏MPPT控制研究[J]. 太阳能学报, 2022, 43(4): 219-225.
HUA Y H, ZHU W, JIN Y Q, et al.Research on photovoltaic MPPT control based on adaptive mutation particle swarm optimization algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 219-225.
[7] 姜萍, 栾艳军, 张伟, 等. 局部遮阴下基于改进PSO的多峰值MPPT研究[J]. 太阳能学报, 2021, 42(8): 140-145.
JIANG P, LUAN Y J, ZHANG W, et al.Research of mult-peak MPPT under partial shaded conditions based on improved PSO algorithm[J]. Acta energiae solaris sinica, 2021, 42(8): 140-145.
[8] 刘春娟, 郑丽君, 孙赟赟, 等. 基于改进型细菌觅食算法的MPPT[J]. 太阳能学报, 2021, 42(9): 83-89.
LIU C J, ZHENG L J, SUN Y Y, et al.Maximum power point tracking strategy based on improved bacterial foraging algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 83-89.
[9] 赵帅旗, 肖辉, 刘忠兵, 等. 基于BSO的局部阴影下光伏最大功率点追踪[J]. 电力系统及其自动化学报, 2020, 32(6): 74-79, 100.
ZHAO S Q, XIAO H, LIU Z B, et al.Photovoltaic maximum power point tracking based on BSO algorithm under partial shading condition[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 74-79, 100.
[10] LI H, YANG D, SU W Z, et al.An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading[J]. IEEE transactions on industrial electronics, 2019, 66(1): 265-275.
[11] 徐金, 葛强, 李娟, 等. 基于全局比较的光伏电池MPPT实验研究[J]. 电源技术, 2021, 45(1): 39-42.
XU J, GE Q, LI J, et al.Experimental study of photovoltaic cell MPPT based on global comparison[J]. Chinese journal of power sources, 2021, 45(1): 39-42.
[12] 谢奇爱. 面向光伏最大功率跟踪的改进滑模控制方法[J]. 太阳能学报, 2020, 41(10): 381-388.
XIE Q A.Improved sliding mode control method for photovoltaic maximum power tracking[J]. Acta energiae solaris sinica, 2020, 41(10): 381-388.
[13] 蒋林, 秦建茹, 韩璐, 等. 基于滑模变功率跟踪的PV-VSG控制技术[J]. 太阳能学报, 2022, 43(5): 193-199.
JIANG L, QIN J R, HAN L, et al.Control technology of PV-VSG based on sliding mode variable power tracking[J]. Acta energiae solaris sinica, 2022, 43(5): 193-199.
PDF(3258 KB)

Accesses

Citation

Detail

Sections
Recommended

/