OPTIMAL SCHEDULING AND UTILITY ALLOCATION STRATEGY FOR MULTI-AGENT VIRTUAL POWER PLANTS BASED ON NASH BARGAINING METHOD

Tang Junbo, Pan Kaiyan, Wang Fuyou, Yu Qi, Zhang qi, Huang Yuxiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 79-88.

PDF(1959 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1959 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 79-88. DOI: 10.19912/j.0254-0096.tynxb.2023-1831

OPTIMAL SCHEDULING AND UTILITY ALLOCATION STRATEGY FOR MULTI-AGENT VIRTUAL POWER PLANTS BASED ON NASH BARGAINING METHOD

  • Tang Junbo1, Pan Kaiyan2, Wang Fuyou2, Yu Qi1, Zhang qi1, Huang Yuxiang3
Author information +
History +

Abstract

During the operation of virtual power plants, numerous risks arise due to the influence of internal and external factors, especially the risk factors brought by uncertain factors such as un dispatchable unit members and loads to the system operation decision-making. In order to realize the optimization strategy and profit distribution in virtual power plants, it is necessary to consider the influence of different risk preferences. In this paper, the controllable and uncontrollable scheduling resources and flexible loads are aggregated to form a multi-agent virtual power plant model to participate in the bidding decision-making of electric energy, peak shaving and standby service market, and the risk preference coefficient λ of each virtual power plant member is defined to establish the day ahead optimal scheduling and utility allocation model of virtual power plant, quantify the actual profit contributions of each entity to the virtual power plant, and adopt the Nash bargaining method for fair distribution of the benefits obtained by the virtual power plant participating in the power market. The case study verifies that Nash bargaining method can accurately reflect the energy output proportion, contribution and risk distribution of each member of the virtual power plant alliance, effectively balance the interests of all parties in profit distribution, and improve the participation enthusiasm and profitability of each member to participate in the market. The method is more applicable than Shapley value method.

Key words

virtual power plants / optimization / risk analysis / profitability / Nash bargaining method / economic dispatch

Cite this article

Download Citations
Tang Junbo, Pan Kaiyan, Wang Fuyou, Yu Qi, Zhang qi, Huang Yuxiang. OPTIMAL SCHEDULING AND UTILITY ALLOCATION STRATEGY FOR MULTI-AGENT VIRTUAL POWER PLANTS BASED ON NASH BARGAINING METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 79-88 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1831

References

[1] 郁海彬, 张煜晨, 刘扬洋, 等. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44(5): 634-644.
YU H B, ZHANG Y C, LIU Y Y, et al.Optimal dispatching bidding strategy of multi-agent virtual power plant participating in electricity market under carbon trading mechanism[J]. Power generation technology, 2023, 44(5): 634-644.
[2] 李淑静, 谭清坤, 张煜, 等. 虚拟电厂关键技术及参与电力市场模式设计研究[J]. 电测与仪表, 2022, 59(12): 33-40.
LI S J, TAN Q K, ZHANG Y, et al.Research on key technologies of virtual power plant and its participation in power market model design[J]. Electrical measurement & instrumentation, 2022, 59(12): 33-40.
[3] 王芸芸, 马志程, 周强, 等. 兼顾公平性的多能源合作博弈优化调度[J]. 太阳能学报, 2022, 43(10): 482-492.
WANG Y Y, MA Z C, ZHOU Q, et al.Multi energy cooperative game optimal scheduling considering fairness[J]. Acta energiae solaris sinica, 2022, 43(10): 482-492.
[4] 杨秀, 杜楠楠, 孙改平, 等. 考虑需求响应的虚拟电厂双层优化调度[J]. 电力科学与技术学报, 2022, 37(2): 137-146.
YANG X, DU N N, SUN G P, et al.Bi-level optimization dispatch of virtual power plants considering the demand response[J]. Journal of electric power science and technology, 2022, 37(2): 137-146.
[5] 李东东, 王啸林, 沈运帷, 等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备, 2023, 43(5): 210-217, 251.
LI D D, WANG X L, SHEN Y W, et al.Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric power automation equipment, 2023, 43(5): 210-217, 251.
[6] 郁海彬, 董帅, 陆增洁, 等. 新型电力系统下储能参与电力调峰调频辅助市场的竞标策略[J]. 中国电力, 2023, 56(8): 48-60.
YU H B, DONG S, LU Z J, et al.Bidding strategy of energy storage participating in the auxiliary market of peak and frequency modulation in new power system[J]. Electric power, 2023, 56(8): 48-60.
[7] 陈继明, 徐乾, 李勇, 等. 计及源荷不确定性和碳捕集虚拟电厂的电-气互联系统优化调度[J]. 太阳能学报, 2023, 44(10): 9-18.
CHEN J M, XU Q, LI Y, et al.Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta energiae solaris sinica, 2023, 44(10): 9-18.
[8] 郭靖琪, 李常生, 付荣之, 等. 基于源荷不确定性的虚拟电厂负荷优化调度方法[J]. 自动化技术与应用, 2023, 42(10): 73-76.
GUO J Q, LI C S, FU R Z, et al.Load optimal dispatching method of virtual power plant based on source load uncertainty[J]. Techniques of automation and applications, 2023, 42(10): 73-76.
[9] 苏宜靖, 吴华华, 徐立中, 等. 面向新型电力系统的第三方独立主体辅助服务市场探索与实践[J]. 浙江电力, 2022, 41(8): 25-30.
SU Y J, WU H H, XU L Z, et al.Exploration and practice of the third-party independent entity auxiliary service market for new power system[J]. Zhejiang electric power, 2022, 41(8): 25-30.
[10] 高洪超, 王宣元, 邱小燕, 等. 新型电力系统环境下的虚拟电厂辅助调峰市场机制及其商业模式设计[J]. 太阳能学报, 2023, 44(3): 376-385.
GAO H C, WANG X Y, QIU X Y, et al.Ramping energy market mechanism and its business model of virtual power plants oriented to new power system[J]. Acta energiae solaris sinica, 2023, 44(3): 376-385.
[11] 罗其华, 李平, 张少迪. 考虑需求响应和阶梯碳交易的虚拟电厂低碳经济调度[J]. 浙江电力, 2023, 42(6): 51-59.
LUO Q H, LI P, ZHANG S D.Low-carbon and economic scheduling of virtual power plant considering demand response and stepwise carbon trading[J]. Zhejiang electric power, 2023, 42(6): 51-59.
[12] 吴洲洋, 艾欣, 胡俊杰, 等. 基于充电行为预测的电动汽车参与系统调频备用: 容量挖掘与风险评估[J]. 电力自动化设备, 2022, 42(4): 18-26.
WU Z Y, AI X, HU J J, et al.EVs' participation in system frequency regulation reserve based on charging behavior prediction: capacity mining and risk evaluation[J]. Electric power automation equipment, 2022, 42(4): 18-26.
[13] 袁桂丽,苏伟芳. 计及电动汽车不确定性的虚拟电厂参与AGC调频服务研究[J]. 电网技术, 2020, 44(7): 2538-2548.
YUAN G I, SU W F.Virtual power plants providing AGC FM service considering uncertainty of electric vehicles[J]. Power system technology, 2020, 44(7): 2538-2548.
[14] 刘立洲, 龚锦霞. 基于改进Shapley算法的虚拟电厂博弈模型分析[J]. 电测与仪表, 2022, 59(12): 41-47.
LIU L Z, GONG J X.Game model analysis of virtual power plant based on improved Shapley algorithm[J]. Electrical measurement & instrumentation, 2022, 59(12): 41-47.
[15] 麻秀范, 余思雨, 朱思嘉, 等. 基于多因素改进Shapley的虚拟电厂利润分配[J]. 电工技术学报, 2020, 35(S2): 585-595.
MA X F, YU S Y, ZHU S J, et al.Profit allocation to virtual power plant members based on improved multifactor shapley value method[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 585-595.
[16] 刘蓉晖, 赵增凯, 孙改平, 等. 考虑不同风险偏好的虚拟电厂优化策略及利润分配[J]. 电力自动化设备, 2021, 41(4): 154-161.
LIU R H, ZHAO Z K, SUN G P, et al.Optimization strategy and profit allocation of virtual power plant considering different risk preference[J]. Electric power automation equipment, 2021, 41(4): 154-161.
[17] 唐佳圆, 赵文彬, 卢武, 等. 考虑风险分摊的多主体交易及利润分配方法[J]. 电气传动, 2022, 52(15): 38-45.
TANG J Y, ZHAO W B, LU W, et al.Multi-agent transaction and profit distribution method considering risk allocation[J]. Electric drive, 2022, 52(15): 38-45.
PDF(1959 KB)

Accesses

Citation

Detail

Sections
Recommended

/