STUDY ON HEAT EXTRACTION PERFORMANCE OF ENHANCED GEOTHERMAL SYSTEMS (EGS) BASED ON MC-DFN SIMULATION

Wang Junchao, Li Chengyu, Li Xinxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 91-99.

PDF(2834 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2834 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 91-99. DOI: 10.19912/j.0254-0096.tynxb.2023-1848

STUDY ON HEAT EXTRACTION PERFORMANCE OF ENHANCED GEOTHERMAL SYSTEMS (EGS) BASED ON MC-DFN SIMULATION

  • Wang Junchao1, Li Chengyu2, Li Xinxin1
Author information +
History +

Abstract

This study proposes a simulation method of geothermal extraction based on the Monte Carlo-discrete fracture network (MC-DFN) model. It investigates the effects of fracture density, inclination angle, and trace lengths on heat extraction performance and analyze key influencing factors. The results reveal that excessively low or high fracture geometry parameters are detrimental to heat extraction. Optimal parameter combinations include a fracture density of 0.003 bars/m2, two sets of fractures with inclination angles of 30° and 120°, and trace lengths ranging from 36.55 m to 43.77 m. The sensitivity of fracture geometry parameters to heat extraction follows the order: fracture length > density > inclination angle.

Key words

geothermal energy / discrete fracture network / finite element method / geometric parameter / heat extraction performance / Monte Carlo simulation

Cite this article

Download Citations
Wang Junchao, Li Chengyu, Li Xinxin. STUDY ON HEAT EXTRACTION PERFORMANCE OF ENHANCED GEOTHERMAL SYSTEMS (EGS) BASED ON MC-DFN SIMULATION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 91-99 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1848

References

[1] 李克勋, 宗明珠, 魏高升. 地热能及与其他新能源联合发电综述[J]. 发电技术, 2020, 41(1): 79-87.
LI K X, ZONG M Z, WEI G S.Overview of geothermal power generation and joint power generation with other new energy sources[J]. Power generation technology, 2020, 41(1): 79-87.
[2] 王昌龙, 黄志甲, 李欢, 等. 注入温度对增强型地热系统性能的影响研究[J]. 太阳能学报, 2021, 42(3): 179-183.
WANG C L, HUANG Z J, LI H, et al.Study on impact of injection temperature on performance of enhanced geothermal systems[J]. Acta energiae solaris sinica, 2021, 42(3): 179-183.
[3] TAKUMA K, MAEDA Y, WATANABE Y, et al.CO2 fracturing of volcanic rocks under geothermal conditions: characteristics and process[J]. Geothermics, 2024, 120: 103007.
[4] 巩亮, 韩东旭, 陈峥, 等. 增强型地热系统关键技术研究现状及发展趋势[J]. 天然气工业, 2022, 42(7): 135-159.
GONG L, HAN D X, CHEN Z, et al.Research status and development trend of key technologies for an enhanced geothermal system[J]. Natural gas industry, 2022, 42(7): 135-159.
[5] 张宁, 赵阳升, 万志军, 等. 三维应力下热破裂对花岗岩渗流规律影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(1): 118-123.
ZHANG N, ZHAO Y S, WAN Z J, et al.Experimental research on seepage laws of granite under thermal cracking action with 3D stress[J]. Chinese journal of rock mechanics and engineering, 2010, 29(1): 118-123.
[6] 翟海珍, 魏国灵, 金光荣, 等. 裂隙展布特征对EGS采热影响的理论数值模拟研究[J]. 地球物理学进展, 2020, 35(2): 480-487.
ZHAI H Z, WEI G L, JIN G R, et al.Theoretical numerical simulation of the effect of fracture distribution characteristics on EGS heat extraction[J]. Progress in geophysics, 2020, 35(2): 480-487.
[7] 刘汉青, 胡才博, 赵桂萍, 等. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程: 以青海共和盆地恰卜恰地区干热岩开发为例[J]. 地球物理学报, 2023, 66(7): 2887-2902.
LIU H Q, HU C B, ZHAO G P, et al.Thermal-hydraulic finite element simulation of temperature decrease process during hot dry rock exploitation: a case study in the qiabuqia area, Gonghe Basin, Qinghai province[J]. Chinese journal of geophysics, 2023, 66(7): 2887-2902.
[8] 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报, 2014, 33(1): 43-51.
CHEN B G, SONG E X, CHENG X H.A numerical method for discrete fracture network model for flow and heat transfer in two-dimensional fractured rocks[J]. Chinese journal of rock mechanics and engineering, 2014, 33(1): 43-51.
[9] 单丹丹, 李玮, 闫铁, 等. 增强型地热系统采热性能评价: 以共和盆地恰卜恰地区干热岩储层为例[J]. 天然气工业, 2022, 42(10): 150-160.
SHAN D D, LI W, YAN T, et al.Evaluation on heat extraction performance of enhanced geothermal system: a case study of hot-dry rock reservoirs in the qiabuqia area of the Gonghe Basin[J]. Natural gas industry, 2022, 42(10): 150-160.
[10] ZHANG W, QU Z Q, GUO T K, et al.Study of the enhanced geothermal system(EGS) heat mining from variably fractured hot dry rock under thermal stress[J]. Renewable energy, 2019, 143: 855-871.
[11] 韩东旭, 张炜韬, 焦开拓, 等. 基于嵌入式离散裂缝模型的增强型地热系统热-流-力-化耦合分析[J]. 天然气工业, 2023, 43(7): 126-138.
HAN D X, ZHANG W T, JIAO K T, et al.Analysis of thermal-hydraulic-mechanical-chemical coupling for EGS based on embedded discrete fracture model[J]. Natural gas industry, 2023, 43(7): 126-138.
[12] HE R H, RONG G, TAN J, et al.Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures[J]. Renewable energy, 2022, 188: 524-544.
[13] 宋国锋, 李根生, 宋先知, 等. 基于多目标的干热岩注采取热性能均衡优化方法[J]. 天然气工业, 2022, 42(4): 73-84.
SONG G F, LI G S, SONG X Z, et al.Multi-objective based balanced optimization method of heat extraction performance of hot dry rock[J]. Natural gas industry, 2022, 42(4): 73-84.
[14] LI X X, LI C Y, GONG W P, et al.Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme[J]. Energy, 2023, 263: 125674.
[15] 李馨馨, 李典庆, 徐轶. 地热对井系统裂隙岩体三维渗流传热耦合的等效模拟方法[J]. 工程力学, 2019, 36(7): 238-247.
LI X X, LI D Q, XU Y.Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system[J]. Engineering mechanics, 2019, 36(7): 238-247.
[16] GONG F C, GUO T K, SUN W, et al.Evaluation of geothermal energy extraction in enhanced geothermal system(EGS) with multiple fracturing horizontal wells (MFHW)[J]. Renewable energy, 2020, 151: 1339-1351.
[17] YAO J, ZHANG X, SUN Z X, et al.Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Geothermics, 2018, 74: 19-34.
[18] CHEN J L, JIANG F M.Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable energy, 2015, 74: 37-48.
[19] 黄诗冰, 刘泉声, 程爱平, 等. 低温裂隙岩体水-热耦合模型研究及数值分析[J]. 岩土力学, 2018, 39(2): 735-744.
HUANG S B, LIU Q S, CHENG A P, et al.A coupled hydro-thermal model of fractured rock mass under low temperature and its numerical analysis[J]. Rock and soil mechanics, 2018, 39(2): 735-744.
[20] 李鹏飞, 朱其志, 顾水涛, 等. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
LI P F, ZHU Q Z, GU S T, et al.A phase field method to simulate crack nucleation and crack propagation in rock-like materials[J]. Engineering mechanics, 2018, 35(3): 41-48.
[21] 杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7): 1130-1137.
YANG Y L, JING J, WANG F G, et al.Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta energiae solaris sinica, 2014, 35(7): 1130-1137.
[22] CHEN S H, FENG X M, ISAM S.Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method[J]. International journal for numerical and analytical methods in geomechanics, 2008, 32(12): 1459-1477.
[23] THOVERT J F, MOURZENKO V V, ADLER P M.Percolation in three-dimensional fracture networks for arbitrary size and shape distributions[J]. Physical review E, 2017, 95(4-1): 042112.
[24] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 109-117.
SUN Z X, XU Y, LYU S H, et al.A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems[J]. Journal of China University of Petroleum (edition of natural science), 2016, 40(6): 109-117.
[25] 曲占庆, 张伟, 郭天魁, 等. 基于局部热非平衡的含裂缝网络干热岩采热性能模拟[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 90-98.
QU Z Q, ZHANG W, GUO T K, et al.Numerical simulation of heat mining performance of hot dry rocks with fracture network based on a local thermal non-equilibrium model[J]. Journal of China University of Petroleum(edition of natural science), 2019, 43(1): 90-98.
[26] 单丹丹. 井筒传热与随机裂隙储层热流耦合数值模拟研究[D]. 大庆: 东北石油大学, 2021.
SHAN D D.Numerical simulation study on coupling of wellbore heat transfer and heat flow in randomly fractured reservoirs[D]. Daqing: Northeast Petroleum University, 2021.
[27] 罗峰. 增强型地热系统和二氧化碳利用中的流动与换热问题研究[D]. 北京: 清华大学, 2015.
LUO F.Researches on flow and heat transfer involved in enhanced geothermal system and carbon dioxide utiliza[D]. Beijing: Tsinghua University, 2015.
[28] 郭志鹏, 卜宪标, 李华山, 等. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721.
GUO Z P, BU X B, LI H S, et al.Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model[J]. Chemical industry and engineering progress, 2023, 42(2): 711-721.
[29] LI X X, LI D Q, XU Y.Modeling the effects of microcracks on water permeability of concrete using 3D discrete crack network[J]. Composite structures, 2019, 210: 262-273.
[30] 阮杰, 张金龙, 张成辉, 等. 离散裂隙网络对岩体力学特性影响数值模拟研究[J]. 河北工程大学学报(自然科学版), 2021, 38(1): 40-46.
RUAN J, ZHANG J L, ZHANG C H, et al.Numerical simulation of the influence of discrete fracture network on the mechanical parameters of rock mass[J]. Journal of Hebei University of Engineering(natural science edition), 2021, 38(1): 40-46.
[31] MONDAL D, HAN S J, SANG S X, et al.Application of artificial neural network to evaluate coalbed methane exploration potential: a case study from permian Longtan formation, Shuicheng, Guizhou[J]. Natural resources research, 2024, 33(2): 609-636.
[32] 张洪伟, 万志军,周长冰, 等. 干热岩高温力学特性及热冲击效应分析[J]. 采矿与安全工程学报, 2021, 38(1): 138-145.
ZHANG H W, WAN Z J, ZHOU C B, et al.High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of mining & safety engineering, 2021, 38(1): 138-145.
PDF(2834 KB)

Accesses

Citation

Detail

Sections
Recommended

/