A TWO-LAYER OPTIMAL ALLOCATION METHOD FOR HYBRID SHARED ENERGY STORAGE CONSIDERING THE UNCERTAINTY OF WIND POWER AND PHOTOVOLTAIC

Zhou Bo, Li Erchao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 189-198.

PDF(5063 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5063 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 189-198. DOI: 10.19912/j.0254-0096.tynxb.2023-1855

A TWO-LAYER OPTIMAL ALLOCATION METHOD FOR HYBRID SHARED ENERGY STORAGE CONSIDERING THE UNCERTAINTY OF WIND POWER AND PHOTOVOLTAIC

  • Zhou Bo, Li Erchao
Author information +
History +

Abstract

In this paper, the capacity optimization configuration of hybrid shared energy storage system based on multi-area integrated energy system is studied. Firstly, the overall architecture of multi-regional integrated energy system with hybrid shared energy storage is established, and the income approach and interaction mode of each subject are expounded. Secondly, an integrated demand response mechanism considering the load-side electricity-heat-cooling coupling conversion is proposed for the regional integrated energy system. On this basis, a bi-level optimal configuration model is proposed, in which the upper model aims at the optimal annual operating cost of the thermoelectric hybrid shared energy storage system, and the lower model aims at the optimal annual operating cost of the multi-regional integrated energy system. Meanwhile, aiming at the uncertainty of wind and solar output in the lower-level optimization model, it is transformed into a dynamic robust optimization problem with time-varying parameters, and a robust optimization over time algorithm based on problem characteristic change guidance (PCCG-ROOT) is proposed to solve the problem. The simulation results show that the proposed bi-level optimal configuration algorithm can reasonably configure the rated capacity and operating power of the hybrid shared energy storage system.

Key words

demand response / energy storage / renewable energy / regional integrated energy system / optimization algorithms

Cite this article

Download Citations
Zhou Bo, Li Erchao. A TWO-LAYER OPTIMAL ALLOCATION METHOD FOR HYBRID SHARED ENERGY STORAGE CONSIDERING THE UNCERTAINTY OF WIND POWER AND PHOTOVOLTAIC[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 189-198 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1855

References

[1] 修晓青, 李相俊, 李蓓, 等. 电网侧储能多重应用价值及运营策略研究[J]. 太阳能学报, 2023, 44(9): 539-545.
XIU X Q, LI X J, LI B, et al.Research on multiple application value and operation strategy of grid side energy storage[J]. Acta energiae solaris sinica, 2023, 44(9): 539-545.
[2] 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89.
SUN Y S, YANG M, SHI C L, et al.Analysis of application status and development trend of energy storage[J]. High voltage engineering, 2020, 46(1): 80-89.
[3] XU T, MENG H, ZHU J, et al.Considering the life-cycle cost of distributed energy-storage planning in distribution grids[J]. Applied sciences, 2018, 8(12): 2615.
[4] 李咸善, 解仕杰, 方子健, 等. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10): 44-51.
LI X S, XIE S J, FANG Z J, et al.Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric power automation equipment, 2021, 41(10): 44-51.
[5] DAI R, ESMAEILBEIGI R, CHARKHGARD H.The utilization of shared energy storage in energy systems: a comprehensive review[J]. IEEE transactions on smart grid, 2021, 12(4): 3163-3174.
[6] 李姚旺, 张宁, 张世旭, 等. 面向电力系统的多能源云储能模式: 基本概念与研究展望[J]. 中国电机工程学报, 2023, 43(6): 2179-2190.
LI Y W, ZHANG N, ZHANG S X, et al.Multi-energy cloud energy storage for power systems: basic concepts and research prospects[J]. Proceedings of the CSEE, 2023, 43(6): 2179-2190.
[7] 李鑫, 王娟, 邱亚, 等. 基于VMD的混合储能容量优化配置[J]. 太阳能学报, 2022, 43(2): 88-96.
LI X, WANG J, QIU Y, et al.Optimal allocation of hybrid energy storage capacity based on variational mode decomposition[J]. Acta energiae solaris sinica, 2022, 43(2): 88-96.
[8] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(4): 75-81.
LIU Z M, QI G Y, GAO J G, et al.Research on optimal configuration of hybrid energy storage capacity based on adaptive vmd[J]. Acta energiae solaris sinica, 2022, 43(4): 75-81.
[9] 李至骜, 陈来军, 刘当武, 等. 基于主从博弈的储能电站容量电费定价方法[J]. 高电压技术, 2020, 46(2): 519-526.
LI Z A, CHEN L J, LIU D W, et al.Subsidy pricing method for Stackelberg-game-based energy storage system[J]. High voltage engineering, 2020, 46(2): 519-526.
[10] 马志侠, 张林鍹, 郑兴, 等. 基于PEMFC-P2G与风光不确定的综合能源系统优化调度[J]. 太阳能学报, 2022, 43(6): 441-447.
MA Z X, ZHANG L X, ZHENG X, et al.Optimal scheduling of integrated energy system based on PEMFC-P2G and inpact of wind power and photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2022, 43(6): 441-447.
[11] 邱革非, 何超, 骆钊, 等. 考虑源、荷不确定性的工业园区电-气互联综合能源系统模糊优化调度[J]. 电力自动化设备, 2022, 42(5): 8-14.
QIU G F, HE C, LUO Z, et al.Fuzzy optimal scheduling of integrated electricity and natural gas system in industrial park considering source-load uncertainty[J]. Electric power automation equipment, 2022, 42(5): 8-14.
[12] 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45(10): 3822-3832.
WU S J, LI Q, LIU J K, et al.Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power system technology, 2021, 45(10): 3822-3832.
[13] 刘亚锦, 代航, 刘志坚, 等. 面向多类型工业用户的分散式共享储能配置及投资效益分析[J]. 电力自动化设备, 2021, 41(10): 256-264.
LIU Y J, DAI H, LIU Z J, et al.Configuration and investment benefit analysis of decentralized shared energy storage for multiple types of industrial users[J]. Electric power automation equipment, 2021, 41(10): 256-264.
[14] 王成山, 洪博文, 郭力, 等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报, 2013, 33(31): 26-33, 3.
WANG C S, HONG B W, GUO L, et al.A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33, 3.
[15] GU W, WANG Z H, WU Z, et al.An online optimal dispatch schedule for CCHP microgrids based on model predictive control[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA, 2017: 1.
[16] YU X, JIN Y C, TANG K, et al.Robust optimization over time—a new perspective on dynamic optimization problems[C]//IEEE Congress on Evolutionary Computation. Barcelona, Spain, 2010: 1-6.
[17] FU H B, SENDHOFF B, TANG K, et al.Finding robust solutions to dynamic optimization problems[C]//Applications of Evolutionary Computation: 16th European Conference, EvoApplications. Vienna, Austria, 2013: 616-625.
[18] JIN Y C, TANG K, YU X, et al.A framework for finding robust optimal solutions over time[J]. Memetic computing, 2013, 5(1): 3-18.
PDF(5063 KB)

Accesses

Citation

Detail

Sections
Recommended

/