NUMERICAL ANALYSIS OF CONTACT TRANSFERRING MECHANISM BETWEEN STEEL LINING AND SURROUNDING ROCK IN UNDERGROUND GAS STORAGE CAVERN OF CAES POWER PLANT

Fu Dan, Wu Hegao, Li Peng, Zhang Migaoyang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 25-33.

PDF(2779 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2779 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 25-33. DOI: 10.19912/j.0254-0096.tynxb.2023-1886

NUMERICAL ANALYSIS OF CONTACT TRANSFERRING MECHANISM BETWEEN STEEL LINING AND SURROUNDING ROCK IN UNDERGROUND GAS STORAGE CAVERN OF CAES POWER PLANT

  • Fu Dan1, Wu Hegao2, Li Peng3, Zhang Migaoyang4
Author information +
History +

Abstract

The contact transferring relationship between the steel lining and the backfill concrete in the shallow buried cavern with hard rock is one of the important factors in determining the joint bearing state of steel lining-concrete lining-surrounding rock and the stress level of the steel lining. In this paper, based on the first excavated hard rock gas storage cavern in China, a study on the cyclic contact transferring behavior between steel lining and concrete lining is carried out based on the ABAQUS platform. This study also elucidated the periodic mechanical response characteristics of the composite structure under the air pressure and air temperature. The results show that the air pressure leads to a large plastic zone at the top and bottom of the surrounding rock, and the irrecoverable deformation of the surrounding rock leads to an increase in the gap between the steel lining and concrete lining after pressure removal. The gap is concentrated at the top of the steel lining under the influence of gravity. For continue running after inspection, the contact pressure between the steel lining and the concrete lining and the steel lining’s stresses experience redistribution. The top contact pressure decreases while the steel lining’s stresses increases significantly, becoming a high risk area for fracture. The air temperature changes mainly cause temperature cycling fluctuations in concrete lining. For contact pressure, temperature rise leads to contact pressure increases and temperature drop leads to contact pressure decreases, while the temperature effect for the stresses of the steel lining is reducing stress peak and stress amplitude. When analyzing the strength and fatigue life of sealed steel lining, the contact transferring behavior between steel lining and concrete lining need to be reasonably considered.

Key words

compressed air energy storage / underground gas storage cavern / sealing steel lining / contact / numerical calculation

Cite this article

Download Citations
Fu Dan, Wu Hegao, Li Peng, Zhang Migaoyang. NUMERICAL ANALYSIS OF CONTACT TRANSFERRING MECHANISM BETWEEN STEEL LINING AND SURROUNDING ROCK IN UNDERGROUND GAS STORAGE CAVERN OF CAES POWER PLANT[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 25-33 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1886

References

[1] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报,2021,42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[2] 李铁成, 闫鹏, 胡雪凯, 等. 光伏高占比系统中储能辅助调频控制策略研究[J]. 太阳能学报, 2023, 44(8): 282-291.
LI T C, YAN P, HU X K, et al.Research on energy storage assisted frequency modulation control strategy in photovoltaic high duty cycle system[J]. Acta energiae solaris sinica, 2023, 44(8): 282-291.
[3] 李仲奎, 马芳平, 刘辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报, 2003, 22(增刊): 2121-2126.
LI Z K, MA F P, LIU H.Underground engineering problems in compressed air energy storage and its developing future[J]. Chinese journal of rock mechanics and engineering, 2003, 22(S1): 2121-2126.
[4] 韩中合, 郭森闯, 王珊, 等. 不同工质和储气室下压气储能系统的特性研究[J]. 太阳能学报, 2020, 41(9): 29-35.
HAN Z H, GUO S C, WANG S, et al.Investigation of characteristics of compressed gas energy storage system under different working mediums and gas storage chambers[J]. Acta energiae solaris sinica, 2020, 41(9): 29-35.
[5] 徐英俊, 夏才初, 周舒威, 等. 基于极限分析上限定理的压气储能洞室抗隆起破坏准则[J]. 岩石力学与工程学报, 2022, 41(10): 1971-1980.
XU Y J, XIA C C, ZHOU S W, et al.Anti-uplift failure criterion of caverns for compressed air energy storage based on the upper bound theorem of limit analysis[J]. Chinese journal of rock mechanics and engineering, 2022, 41(10): 1971-1980.
[6] KIM H M, PARK D, RYU D W, et al.Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns[J]. Engineering geology, 2012, 135: 60-65.
[7] 夏才初, 徐英俊, 王辰霖, 等. 基于非稳态渗流过程的压气储能洞室空气渗漏率计算[J]. 岩土力学, 2021, 42(7): 1765-1773, 1793.
XIA C C, XU Y J, WANG C L, et al.Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process[J]. Rock and soil mechanics, 2021, 42(7): 1765-1773, 1793.
[8] 周瑜, 夏才初, 周舒威, 等. 压气储能内衬洞室高分子密封层的气密与力学特性[J]. 岩石力学与工程学报, 2018, 37(12): 2685-2696.
ZHOU Y, XIA C C, ZHOU S W, et al.Air tightness and mechanical characteristics of polymeric seals in lined rock caverns(LRCs) for compressed air energy storage (CAES)[J]. Chinese journal of rock mechanics and engineering, 2018, 37(12): 2685-2696.
[9] 刘澧源, 蒋中明, 王江营, 等. 压气储能电站地下储气库之压缩空气热力学过程分析[J]. 储能科学与技术, 2018, 7(2): 232-239.
LIU L Y, JIANG Z M, WANG J Y, et al.Thermodynamic analyses of compressed air energy storage in a underground rock cavern[J]. Energy storage science and technology, 2018, 7(2): 232-239.
[10] 夏才初, 周舒威, 周瑜, 等. 压缩空气储能的地下岩石内衬洞室关键技术[M]. 上海: 同济大学出版社, 2021.
XIA C C, ZHOU S W, ZHOU Y, et al.Key technologies of underground rock lined caverns for compressed air energy storage [M]. Shanghai: Tongji University Press, 2021.
[11] 蒋中明, 李鹏, 赵海斌, 等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241, 252.
JIANG Z M, LI P, ZHAO H B, et al.Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and soil mechanics, 2020, 41(1): 235-241, 252.
[12] 蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020, 42(2): 230-238.
JIANG Z M, QIN S Z, TANG D.Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese journal of geotechnical engineering, 2020, 42(2): 230-238.
[13] 苏凯, 杨子娟, 伍鹤皋, 等. 缝隙对钢衬钢筋混凝土管道结构承载特性的影响研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(9): 967-976.
SU K, YANG Z J, WU H G, et al.Influence of gap on bearing mechanism of steel-lined reinforced concrete penstock[J]. Journal of Tianjin University (science and technology), 2018, 51(9): 967-976.
[14] 张家志, 石峰, 向际超, 等. 风电机组基础中钢板与混凝土间接触分析[J]. 太阳能学报, 2015, 36(3): 763-768.
ZHANG J Z, SHI F, XIANG J C, et al.Contact analysis between steel and concrete in wind turbine foundation[J]. Acta energiae solaris sinica, 2015, 36(3): 763-768.
[15] ZHANG Q L, WU H G.Sliding behaviour of steel liners on surrounding concrete in c-cross-sections of spiral case structures[J]. Structural engineering international, 2016, 26(4): 333-340.
[16] RABBAT B G, RUSSELL H G.Friction coefficient of steel on concrete or grout[J]. Journal of structural engineering, 1985, 111(3): 505-515.
[17] BALTAY P, GJELSVIK A.Coefficient of friction for steel on concrete at high normal stress[J]. Journal of materials in civil engineering, 1990, 2(1): 46-49.
[18] LEE J, FENVES G L.Plastic-damage model for cyclic loading of concrete structures[J]. Journal of engineering mechanics, 1998, 124(8): 892-900.
[19] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67, 82.
NIE J G, WANG Y H.Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering mechanics, 2013, 30(4): 59-67, 82.
[20] 马铢, 石长征, 伍鹤皋. 考虑黏结滑移的钢衬钢筋混凝土管道承载特性分析[J]. 水利学报, 2022, 53(2): 220-229.
MA Z, SHI C Z, WU H G.Study on the bearing characteristics of steel-lined reinforced concrete penstock considering the bond-slip behavior[J]. Journal of hydraulic engineering, 2022, 53(2): 220-229.
[21] 何勇, 伍鹤皋, 李杰, 等. 瀑布沟水电站充水保压蜗壳结构模型试验[J]. 天津大学学报, 2009, 42(5): 400-406.
HE Y, WU H G, LI J, et al.Test of surrounding concrete of steel spiral case keeping constant internal water pressure in pubugou hydropower station[J]. Journal of Tianjin University, 2009, 42(5): 400-406.
[22] 张宏涛, 徐冰, 白玉星, 等. 钢混凝土界面接触热阻试验研究[J]. 土木建筑与环境工程, 2015, 37(2): 34-38.
ZHANG H T, XU B, BAI Y X, et al.Experimental analysis of interface thermal contact resistance between steel and concrete[J]. Journal of civil, architectural & environmental engineering, 2015, 37(2): 34-38.
PDF(2779 KB)

Accesses

Citation

Detail

Sections
Recommended

/