NUMERICAL SIMULATION OF FSI WIND-INDUCED VIBRATION OF SOLAR PANELS CONSIDERING INFLUENCE OF SLOPE LANDFORM

Chen Fubin, Wang Yu, Zhu Yuzhe, Wang Weijia

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 404-411.

PDF(3646 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3646 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 404-411. DOI: 10.19912/j.0254-0096.tynxb.2023-1895

NUMERICAL SIMULATION OF FSI WIND-INDUCED VIBRATION OF SOLAR PANELS CONSIDERING INFLUENCE OF SLOPE LANDFORM

  • Chen Fubin, Wang Yu, Zhu Yuzhe, Wang Weijia
Author information +
History +

Abstract

In order to investigate the influence of sloping landform on the wind-induced vibration characteristics of solar panels, this study conducted a numerical simulation of the wind-induced response of a solar array based on FSI(fluid structure interface). The flow characteristics of the solar array and the modal response of the solar panels were analyzed, and the wind-induced vibration characteristics of solar panels located on slopes with different inclinations at different heights and spacings were revealed. The results show that: 1) The slope causes airflow blockage, which increases the displacement amplitude of the solar panels, and also reduces the shielding effect of the front-row solar panels on the rear-row solar panels; 2) From the flow characteristics, it can be seen that the first solar panel at the windward edge generates a vortex, which detaches in the rear area, making the flow field in front of the second solar panel complicated, while the flow field around the third solar panel is relatively stable, indicating that the more downstream the solar panel is, the less it is affected by the flow field; 3) The vibration of the solar panels is dominated by low-order modes, and the slope has a significant impact on the vibration of the rear-row solar panels; 4) Increasing the spacing has an impact on the vibration response of the solar array located on the slope, and the impact becomes more significant with the increase of the slope angle; 5) Increasing the height of the solar array on the slope, the displacement amplitude of the first solar panel changes significantly, while the impact on the other two solar panels is relatively small.

Key words

solar modules / landforms / fluid structure interface / wind vibration / numerical simulation

Cite this article

Download Citations
Chen Fubin, Wang Yu, Zhu Yuzhe, Wang Weijia. NUMERICAL SIMULATION OF FSI WIND-INDUCED VIBRATION OF SOLAR PANELS CONSIDERING INFLUENCE OF SLOPE LANDFORM[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 404-411 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1895

References

[1] 张超, 黄小东, 陶婷, 等. 基于流固耦合模拟的光伏支撑系统风振特性研究[J]. 太阳能学报, 2017, 38(9): 2418-2425.
ZHANG C, HUANG X D, TAO T, et al.Wind vibration characteristics analysis of PV panels bracket system based on FSI simulations[J]. Acta energiae solaris sinica, 2017, 38(9): 2418-2425.
[2] 牛斌, 张超, 侯巍, 等. 基于CFD方法的地面光伏阵列风压时程特性研究[J]. 太阳能学报, 2016, 37(7): 1774-1779.
NIU B, ZHANG C, HOU W, et al.Time history analysis of wind load on arrayed solar panels based on CFD simulations[J]. Acta energiae solaris sinica, 2016, 37(7): 1774-1779.
[3] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[4] 马文勇, 孙高健, 刘小兵, 等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击, 2017, 36(7): 8-13.
MA W Y, SUN G J, LIU X B, et al.Tests for wind load distribution model of solar panels[J]. Journal of vibration and shock, 2017, 36(7): 8-13.
[5] 李晓娜. 太阳能光伏支架风荷载体型系数研究[D]. 石家庄: 铁道大学, 2015.
LI X N.Study on wind load of solar photovoltaic bracket[D]. Shijiazhuang: Tiedao University, 2015.
[6] 柴晓兵. 柔性太阳能光伏支架风荷载取值研究[D]. 石家庄: 铁道大学, 2021.
CHAI X B.Research on wind loads on flexible solar photovoltaic support system[D]. Shijiazhuang: Tiedao University, 2021.
[7] 马文勇, 柴晓兵, 赵怀宇, 等. 基于偏心风荷载分布模型的柔性支撑索分配系数研究[J]. 振动与冲击, 2021, 40(12): 305-310.
MA W Y, CHAI X B, ZHAO H Y, et al.A study on distribution coefficient of a flexible photovoltaic support cable based on an eccentric moment wind load distribution model[J]. Journal of vibration and shock, 2021, 40(12): 305-310.
[8] 郭涛, 杨渊茗, 黄国强, 等. 山区峡谷地形下柔性支撑光伏阵列的风振特性研究[J]. 太阳能学报, 2023, 44(11): 131-140.
GUO T, YANG M H, HUANG G Q, et al.Wind-indeced vibration analysis of flexible photovoltaic support structure under mountain canyon terrain[J]. Acta energiae solaris sinica, 2023, 44(11): 131-140.
[9] 方媛, 何斌. 柔性绳索预拉力作用下太阳能光伏阵列流固耦合颤振特性仿真[C]//中国力学大会论文集(CCTAM 2019). 杭州, 中国, 2019: 2537-2548.
FANG Y, HE B.Fluid-solid coupling flutter characteristics simulation of solar photovoltaic arrays under pre-tensioning of flexible ropes[C]//The Chinese Congress of Theoretical and Applied Mechanics(CCTAM·2019). Hangzhou, China, 2019: 2537-2548.
[10] 周炜, 何斌, 蔡晶, 等. 一类光伏电站架构体系的风荷载特性及折减分析[J]. 结构工程师, 2018, 34(2): 86-94.
ZHOU W, HE B, CAI J, et al.Wind load characteristics and reduction analysis of a structural system of photovoltaic power station[J]. Structural engineers, 2018, 34(2): 86-94.
[11] 阮辉, 廖伟丽, 王康生, 等. 光伏阵列表面风荷载数值研究[J]. 太阳能学报, 2015, 36(4): 871-877.
RUAN H, LIAO W L, WANG K S, et al.Numerical research on surface wind load of PV array[J]. Acta energiae solaris sinica, 2015, 36(4): 871-877.
[12] 杜航. 大跨度柔性光伏支架结构的风致效应及其控制[D]. 杭州: 浙江大学, 2022.
DU H.Wind-induced effects and control of large-span flexible photovoltaic support structures[D]. Hangzhou: Zhejiang University, 2022.
[13] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU H, XU H W, ZHANG Y L, et al.Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74.
[14] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[15] SHADEMAN M, HANGAN H.Wind loading on solar panels at different inclination angles[C]//11th Conference of American Society of Wind Engineers. Puerto Rico, USA, 2009: 22-26.
[16] CAO J X, YOSHIDA A, SAHA P K, et al.Wind loading characteristics of solar arrays mounted on flat roofs[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 214-225.
[17] SHADEMAN M, BARRON R M, BALACHANDAR R, et al.Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations[J]. Canadian journal of civil engineering, 2014, 41(8): 728-738.
[18] JUBAYER C M, HANGAN H.Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of wind engineering and industrial aerodynamics, 2014, 134: 56-64.
PDF(3646 KB)

Accesses

Citation

Detail

Sections
Recommended

/