TWO-LAYER DISTRIBUTED COOPERATIVE CONTROL OF FLYWHEEL ENERGY STORAGE GROUPS BASED ON CONSENSUS ALGORITHM

Li Jiayu, Wei Le, Fang Fang, Wang Bingyu, Li Zijian

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 34-42.

PDF(4791 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4791 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 34-42. DOI: 10.19912/j.0254-0096.tynxb.2023-1898

TWO-LAYER DISTRIBUTED COOPERATIVE CONTROL OF FLYWHEEL ENERGY STORAGE GROUPS BASED ON CONSENSUS ALGORITHM

  • Li Jiayu, Wei Le, Fang Fang, Wang Bingyu, Li Zijian
Author information +
History +

Abstract

A two-layer distributed cooperative control strategy, based on the consensus algorithm, is proposed for flywheel energy storage group within DC microgrids. The primary control layer adopts magnet field-oriented control and space vector pulse-width modulation, with reference values provided by voltage-current droop equations. Building upon this foundation of traditional droop control, an additional distributed secondary control layer is introduced. This layer incorporates an average voltage observer and a state equation relying on flywheel energy indicators. It solely utilizes communication between adjacent energy storage units to modify the droop control via the consensus algorithm. This approach effectively rectifies voltage deviations caused by droop control while overcoming issues associated with traditional centralized control, such as single-point failures and limited scalability. Simulation results affirm the effectiveness of the proposed strategy, demonstrating the restoration of average bus voltage to its rated level, the allocation of power to individual flywheel energy storage units according to their energy states, and the prevention of power circulation.

Key words

flywheel / energy storage / microgrids / voltage control / consensus algorithm

Cite this article

Download Citations
Li Jiayu, Wei Le, Fang Fang, Wang Bingyu, Li Zijian. TWO-LAYER DISTRIBUTED COOPERATIVE CONTROL OF FLYWHEEL ENERGY STORAGE GROUPS BASED ON CONSENSUS ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 34-42 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1898

References

[1] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[2] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Y B, ZHAO Y, ZHAO L, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[3] 师瑞峰, 宁津, 高毓钦, 等. 含氢储能的公路交通风、光自洽微网系统优化调度策略研究[J]. 太阳能学报, 2023, 44(11): 513-521.
SHI R F, NING J, GAO Y Q, et al.Research on optimal dispatch strategy of wind and solar self-consistent microgrid in road transportation system with hydrogen energy storage[J]. Acta energiae solaris sinica, 2023, 44(11): 513-521.
[4] CHOUDHURY S.Review of energy storage system technologies integration to microgrid: types, control strategies, issues, and future prospects[J]. Journal of energy storage, 2022, 48: 103966.
[5] 李佳玉, 魏乐, 房方, 等. 飞轮储能控制技术及其在新型电力系统中的应用[J]. 中国科学: 技术科学, 2024, 54(6): 1003-1020.
LI J Y, WEI L, FANG F, et al.Control techniques of flywheel energy storage and its application in new power system[J]. Scientia sinica (technologica), 2024, 54(6): 1003-1020.
[6] 魏乐, 周子宇, 房方, 等. 双PWM 变流器飞轮系统母线电压LADRC二次控制策略[J]. 太阳能学报, 2025, 46(1): 242-250.
WEI L, ZHOU Z Y, FANG F, et al.LADRC-based secondary control strategy of dc-link voltage for dual pwm converter flywheel energy storage system[J]. Acta energiae solaris sinica, 2025, 46(1): 242-250.
[7] LAI J F, SONG Y D, DU X Q.Hierarchical coordinated control of flywheel energy storage matrix systems for wind farms[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 48-56.
[8] 郭伟, 张建成, 李翀, 等. 针对并网型风储微网的飞轮储能阵列系统控制方法[J]. 储能科学与技术, 2018, 7(5): 810-814.
GUO W, ZHANG J C, LI C, et al.Control method of flywheel energy storage array for grid-connected wind-storage microgrid[J]. Energy storage science and technology, 2018, 7(5): 810-814.
[9] 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608.
CHEN Y L, WU X, TENG W, et al.Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy storage science and technology, 2022, 11(2): 600-608.
[10] MAHDAVI M S, GHAREHPETIAN G B, MOGHADDAM H A.Enhanced frequency control method for microgrid-connected flywheel energy storage system[J]. IEEE systems journal, 2021, 15(3): 4503-4513.
[11] 金辰晖, 姜新建, 戴兴建. 微电网飞轮储能阵列协调控制策略研究[J]. 储能科学与技术, 2018, 7(5): 834-840.
JIN C H, JIANG X J, DAI X J.Coordinated control strategy of flywheel energy storage array for micro-grid[J]. Energy storage science and technology, 2018, 7(5): 834-840.
[12] 任京攀, 马宏伟, 姚明清. 基于粒子群算法的飞轮阵列协调控制策略[J]. 电工技术学报, 2021, 36(增刊1): 381-388.
REN J P, MA H W, YAO M Q.A coordinated control strategy of flywheel array based on particle swarm optimization algorithm[J]. Transactions of China electrotechnical Society, 2021, 36(S1): 381-388.
[13] CAO Q, SONG Y D, GUERRERO J M, et al.Coordinated control for flywheel energy storage matrix systems for wind farm based on charging/discharging ratio consensus algorithms[J]. IEEE transactions on smart grid, 2016, 7(3): 1259-1267.
[14] GAO H L, LI W, CAI H.Distributed control of a flywheel energy storage system subject to unreliable communication network[J]. Energy reports, 2022, 8: 11729-11739.
[15] SUN Y Z, HU J P, LIU J X.Periodic event-triggered control of flywheel energy storage matrix systems for wind farms[J]. IET control theory & applications, 2020, 14(11): 1467-1477.
[16] ZHANG Z Q, MENG K, LIU Q, et al.Hierarchical energy coordination of flywheel energy storage array system for wind farms based on consensus algorithm[J]. AIP advances, 2022, 12(3): 035005.
[17] 赵霁晴, 张建成, 宋兆鑫, 等. 基于飞轮储能阵列系统的分布式协调控制策略[J]. 华北电力大学学报(自然科学版), 2018, 45(6): 28-34.
ZHAO J Q, ZHANG J C, SONG Z X, et al.Distributed coordinated control strategy based on flywheel energy storage array system[J]. Journal of North China Electric Power University (natural science edition), 2018, 45(6): 28-34.
[18] 叶刚进, 孙可, 杨翾, 等. 飞轮储能式电动汽车充电站的分布式协同控制策略[J]. 现代电力, 2020, 37(5):526-531.
YE G J, SUN K, YANG Z,et al.Research of distributed cooperative control strategy for fast charging stations with flywheel energy storage system[J]. Modern electric power,2020, 37(5): 526-531.
[19] GOLSORKHI M S, SHAFIEE Q, LU D D, et al.A distributed control framework for integrated photovoltaic-battery-based islanded microgrids[J]. IEEE transactions on smart grid, 2017, 8(6): 2837-2848.
[20] ZHANG Q J, ZENG Y J, LIU Y C, et al.An improved distributed cooperative control strategy for multiple energy storages parallel in islanded DC microgrid[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(1): 455-468.
[21] CHEN X, SHI M X, ZHOU J Y, et al.Distributed cooperative control of multiple hybrid energy storage systems in a DC microgrid using consensus protocol[J]. IEEE transactions on industrial electronics, 2020, 67(3): 1968-1979.
[22] CHEN X, SHI M X, ZHOU J Y, et al.Consensus-based distributed control for photovoltaic-battery units in a DC microgrid[J]. IEEE transactions on industrial electronics, 2019, 66(10): 7778-7787.
[23] ZHOU J Y, SHI M X, CHEN X, et al.A cascaded distributed control framework in DC microgrids[J]. IEEE transactions on smart grid, 2021, 12(1): 205-214.
[24] NASIRIAN V, MOAYEDI S, DAVOUDI A, et al.Distributed cooperative control of DC microgrids[J]. IEEE transactions on power electronics, 2015, 30(4): 2288-2303.
[25] 郑飞, 吴钦木. 电动汽车用IPMSM矢量控制策略研究[J]. 计算机仿真, 2022, 39(1): 148-152.
ZHENG F, WU Q M.Research of IPMSM vector control strategy for electric vehicle[J]. Computer simulation, 2022, 39(1): 148-152.
[26] NUSTES J C, PAU D P, GRUOSSO G.Modelling the field oriented control applied to a 3-phase permanent magnet synchronous motor[J]. Software impacts, 2023, 15: 100479.
[27] 陈云龙, 杨家强, 张翔. 一种计及总损耗功率估计与转速前馈补偿的飞轮储能系统放电控制策略[J]. 中国电机工程学报, 2020, 40(7): 2358-2368.
CHEN Y L, YANG J Q, ZHANG X.A discharge strategy for flywheel energy storage systems based on feedforward compensation of observed total dissipative power and rotational speed[J]. Proceedings of the CSEE, 2020, 40(7): 2358-2368.
[28] 任正义, 周元伟, 张绍武, 等. 转动惯量比对飞轮转子系统稳定性影响[J]. 机械设计与制造, 2020(3): 203-206.
REN Z Y, ZHOU Y W, ZHANG S W, et al.Influence of moment of inertia ratio on stability of flywheel rotor system[J]. Machinery design & manufacture, 2020(3): 203-206.
[29] 陈仲伟, 李达伟, 邹旭东, 等. 双馈电机驱动的飞轮储能系统稳定运行控制方法[J]. 电力科学与技术学报, 2021, 36(1): 177-184.
CHEN Z W, LI D W, ZOU X D, et al.Research on stable operation control method of flywheel energy storage system driven by doubly fed machine[J]. Journal of electric power science and technology, 2021, 36(1): 177-184.
PDF(4791 KB)

Accesses

Citation

Detail

Sections
Recommended

/