PROVINCIAL POWER STRUCTURE OPTIMIZATION CONSIDERING MARGINAL CONTRIBUTION UNDER ENERGY LOW-CARBON TRANSITION

Sun Jingqi, Qin Yujie, Huangfu Siqing, Liu Sitong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 263-271.

PDF(1439 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1439 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 263-271. DOI: 10.19912/j.0254-0096.tynxb.2023-1946

PROVINCIAL POWER STRUCTURE OPTIMIZATION CONSIDERING MARGINAL CONTRIBUTION UNDER ENERGY LOW-CARBON TRANSITION

  • Sun Jingqi, Qin Yujie, Huangfu Siqing, Liu Sitong
Author information +
History +

Abstract

The core objective of the third global energy transition is to promote the formation of a low-carbon energy system based on renewable energy, and the low-carbon transformation of the electric power system is a key part of this process. To achieve the goal of “double carbon” and promote the transformation of regional energy resources structure, the mechanism of the impact of the low-carbon energy transition on the optimization of power supply structure is analyzed, and a model for measuring the marginal contribution of power supply is established. On this basis, a provincial power structure optimization model is constructed under the low-carbon energy transition taking into account the marginal contribution, and the model is solved by a genetic algorithm, and finally the validity of the model is verified by empirical research. The results show that a high proportion of new energy access is the key to realizing the decarbonization of power structure under the premise of ensuring the stability of power supply; the optimization model taking into account the marginal contribution can effectively guide the reasonableness of power supply planning, and seek for power supply solutions under the double benefit of economy and environment.

Key words

decarbonization / electric power system / energy transition / power supply planning / genetic algorithm

Cite this article

Download Citations
Sun Jingqi, Qin Yujie, Huangfu Siqing, Liu Sitong. PROVINCIAL POWER STRUCTURE OPTIMIZATION CONSIDERING MARGINAL CONTRIBUTION UNDER ENERGY LOW-CARBON TRANSITION[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 263-271 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1946

References

[1] 龙勇, 宋敏. 全球能源安全大变局下保障我国能源安全的思路与方略[J]. 改革, 2023(10): 74-83.
LONG Y, SONG M.Ideas and strategies for ensuring China’s energy security in the context of global energy secur ty Upheaval[J]. Reform, 2023(10): 74-83.
[2] 孙倩, 薛进军. 全球价值链风险、能源安全与“双碳” 目标[J]. 中国人口·资源与环境, 2022, 32(11): 9-18.
SUN Q, XUE J J.Global value chain risks, energy security, and the ‘dual carbon' goals[J]. China population, resources and environment, 2022, 32(11): 9-18.
[3] 中国电力企业联合会. 中国电力行业年度发展报告2020[M]. 北京: 中国建材工业出版社, 2020.
China Electricity Council.Annual report on China's power industry development 2020[M]. Beijing: China Building Material Industry Publishing House, 2020.
[4] 李秀芬, 李学峰, 李国庆, 等. 考虑碳约束的区域电源多阶段双层扩展规划方法[J]. 供用电, 2021, 38(10): 12-18.
LI X F, LI X F, LI G Q, et al.Multi-stage two-layer regional power supply expansion planning method considering carbon constraint[J]. Distribution & utilization, 2021, 38(10): 12-18.
[5] 丁曦, 张笑演, 王胜寒, 等. 双碳目标下考虑最优建设时序的区域综合能源系统低碳规划[J]. 高电压技术, 2022, 48(7): 2584-2596.
DING X, ZHANG X Y, WANG S H, et al.Low-carbon planning of regional integrated energy system considering optimal construction timing under dual carbon goals[J]. High voltage engineering, 2022, 48(7): 2584-2596.
[6] 温俊强, 曾博, 张建华. 市场环境下考虑各利益主体博弈的分布式电源双层规划方法[J]. 电力系统自动化, 2015, 39(15): 61-67.
WEN J Q, ZENG B, ZHANG J H.Bi-level programming method for distributed generator considering Stakeholders’Game relationship in an electricity market environment[J]. Automation of electric power systems, 2015, 39(15): 61-67.
[7] 蒋海玮, 张明理, 侯依昕, 等. 碳达峰约束下的省级电源规划方法[J]. 太阳能学报, 2023, 44(9): 49-56.
JIANG H W, ZHANG M L, HOU Y X, et al.Method of provincial generation planning under constraint of carbon peaking[J]. Acta energiae solaris sinica, 2023, 44(9): 49-56.
[8] 李渝, 叶琪, 檀勤良, 等. 考虑碳交易的电源结构多目标优化模型研究[J]. 现代电力, 2019, 36(4): 11-16.
LI Y, YE Q, TAN Q L, et al.Research on multi-objective optimization model of power structure considering carbon emissions trading[J]. Modern electric power, 2019, 36(4): 11-16.
[9] 杨悦, 陈仕军, 杨博宇, 等. 基于环境和经济双重约束的电源结构优化研究[J]. 四川电力技术, 2021, 44(2): 24-27.
YANG Y, CHEN S J, YANG B Y, et al.Research on power supply structure optimization based on environment and economy constraints[J]. Sichuan electric power technology, 2021, 44(2): 24-27.
[10] 胡臻达, 黄夏楠, 曾振松, 等. 基于碳夹点分析法的可再生能源优化调度方法研究[J]. 可再生能源, 2023, 41(8): 1095-1099.
HU Z D, HUANG X N, ZENG Z S, et al.Research on renewable energy planning method based on carbon emission pinch analysis[J]. Renewable energy resources, 2023, 41(8): 1095-1099.
[11] 张晓辉, 梁军雪, 赵翠妹, 等. 基于碳交易的含燃气机组的低碳电源规划[J]. 太阳能学报, 2020, 41(7): 92-98.
ZHANG X H, LIANG J X, ZHAO C M, et al.Research on low-carbon power planning with gas turbine units based on carbon transactions[J]. Acta energiae solaris sinica, 2020, 41(7): 92-98.
[12] 刘自发, 张子腾. 考虑多主体博弈的配电网源网荷储协同规划[J]. 电网技术, 2023, 47(12): 5046-5058.
LIU Z F, ZHANG Z T.Collaborative planning of distribution network source-network-load-storage considering multi-agent game[J]. Power system technology, 2023, 47(12): 5046-5058.
[13] 魏旭, 刘东, 高飞, 等. 双碳目标下考虑源网荷储协同优化运行的新型电力系统发电规划[J]. 电网技术, 2023, 47(9): 3648-3661.
WEI X, LIU D, GAO F, et al.Generation expansion planning of new power system considering collaborative optimal operation of source-grid-load-storage under carbon peaking and carbon neutrality[J]. Power system technology, 2023, 47(9): 3648-3661.
[14] 王建学, 李清涛, 王秀丽, 等. 大规模新能源并网系统电源规划方法[J]. 中国电机工程学报, 2020, 40(10): 3114-3124.
WANG J X, LI Q T, WANG X L, et al.A generation expansion planning method for power systems with large-scale new energy[J]. Proceedings of the CSEE, 2020, 40(10): 3114-3124.
[15] 王帅, 王志成, 王智冬, 等. 基于多阶段随机规划的中国未来电源结构研究[J]. 电力建设, 2022, 43(4): 100-107.
WANG S, WANG Z C, WANG Z D, et al.Future power structure of China based on multi-stage stochastic planning[J]. Electric power construction, 2022, 43(4): 100-107.
[16] 孙启星, 张超, 李成仁, 等. “碳达峰、碳中和” 目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56(1): 9-16.
SUN Q X, ZHANG C, LI C R, et al.Prediction of power system cost and price level under the goal of “carbon peak and carbon neutralization”[J]. Electric power, 2023, 56(1): 9-16.
[17] 艾佳慧. 边际最优化模型的理论根源及其法学应用之检讨[J]. 山东大学学报(哲学社会科学版), 2023(6): 141-155.
AI J H.The theoretical roots of marginal optimization model and its legal application[J]. Journal of Shandong University(philosophy and social sciences), 2023(6): 141-155.
[18] 王晓毅, 唐忠. 考虑供需自平衡和独立运行能力的并网型微电网容量优化配置[J]. 太阳能学报, 2021, 42(5): 74-82.
WANG X Y, TANG Z.Capacity optimization of grid-connected microgrid considering self-balance and independent operation capability[J]. Acta energiae solaris sinica, 2021, 42(5): 74-82.
[19] 苏晨, 吴在军, 窦晓波. 基于虚拟同步机的微电网分布式一致性经济控制策略[J]. 电测与仪表, 2022, 59(10): 45-52.
SU C, WU Z J, DOU X B.Distributed consensus economic control strategy for micro-grid based on virtual synchronous generator[J]. Electrical measurement & instrumentation, 2022, 59(10): 45-52.
[20] 苏晨, 吴在军, 吕振宇, 等. 基于边际成本下垂控制的自治微电网分布式经济运行控制[J]. 电力自动化设备, 2016, 36(11): 59-66.
SU C, WU Z J, LYU Z Y et al. Droop control based on marginal cost for distributed economic operation of islanded microgrid[J]. Electric power automation equipment, 2016, 36(11): 59-66.
[21] 李健华, 刘继春, 陈雪, 等. 含可再生能源的多能互补发电系统容量配置方法[J]. 电网技术, 2019, 43(12): 4387-4398.
LI J H, LIU J C, CHEN X, et al.Capacity allocation of multi-energy complementary system including renewable energy[J]. Power system technology, 2019, 43(12): 4387-4398.
[22] 孙秋野, 任一平, 刘子铭, 等. 基于熵理论的综合能源系统不可能三角研究综述[J]. 控制与决策, 2023, 38(8): 2106-2121.
SUN Q Y, REN Y P, LIU Z M, et al.Review of energy trilemma research of integrated energy system based on entropy theory[J]. Control and decision, 2023, 38(8): 2106-2121.
[23] 王少剑, 王泽宏, 方创琳. 中国城市碳排放绩效的演变特征及驱动因素[J]. 中国科学: 地球科学, 2022, 52(8): 1613-1626.
WANG S J,WANG Z H, FANG C L.Evolutionary characteristics and driving factors of carbon emission performance at the city level in China[J]. Scientia sinica (terrae), 2022, 52(8): 1613-1626.
[24] 曹阳, 李鹏, 袁越, 等. 基于时序仿真的新能源消纳能力分析及其低碳效益评估[J]. 电力系统自动化, 2014, 38(17): 60-66.
CAO Y, LI P, YUAN Y, et al.Analysis on accommodating capability of renewable energy and assessment on low-carbon benefits based on time sequence simulation[J]. Automation of electric power systems, 2014, 38(17): 60-66.
[25] 任景, 高敏, 程松, 等. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56(9): 66-78.
REN J, GAO M, CHENG S, et al.A balance method for power supply-demand adapting to high uncertainties of renewable energy in northwest power grid[J]. Electric power, 2023, 56(9): 66-78.
[26] 王冲, 王秀丽, 鞠平, 等. 电力系统随机分析方法研究综述[J]. 电力系统自动化, 2022, 46(3): 184-199.
WANG C, WANG X L, JU P, et al.Review of research on power system stochastic analysis methods[J]. Automation of electric power systems, 2022, 46(3): 184-199.
[27] 陈冬华, 陈彦斌, 冯根福, 等. 在马克思主义政治经济学中国化时代化中建设中华民族现代文明: 学习贯彻文化传承发展座谈会精神笔谈[J]. 经济研究, 2023, 58(7): 4-51.
CHEN D H, CHEN Y B, FENG G F, et al.Special articles for studying and implementing the spirit of the symposium on cultural inheritance and development[J]. Economic research journal, 2023, 58(7): 4-51.
[28] 中电建规划设计研究院. 2022年电力市场形势分析与趋势预测[R]. 北京: 中电建规划设计研究院, 2022.
China Electric Power Planning and Design Institute. Analysis and forecast of power market situation in 2022[R]. Beijing: China Electric Power Planning and Design Institute, 2022.
[29] 中国电力企业联合会. 可再生能源发展研究[R]. 北京:中国电力出版社, 2020.
China Electricity Council.Study on renewable energy development[R]. Beijing: China Electric Power Press, 2020.
[30] 李靖, 徐天奇, 李琰, 等. 基于多市场耦合的新能源综合发电项目的盈利能力研究[J]. 电力系统保护与控制, 2024, 52(6): 65-76.
LI J, XU T Q, LI Y, et al.Profitability study of multi-market coupled integrated renewable energy generation projects[J]. Power system protection and control, 2024, 52(6): 65-76.
[31] 王嘉阳, 周保荣, 吴伟杰, 等. 西部集中式与东部分布式光伏平准化度电成本研究[J]. 南方电网技术, 2020, 14(9): 80-89.
WANG J Y, ZHOU B R, WU W J, et al.Levelized cost of energy of centralized photovoltaic power in Western China and distributed photovoltaic power in Eastern China[J]. Southern power system technology, 2020, 14(9): 80-89.
PDF(1439 KB)

Accesses

Citation

Detail

Sections
Recommended

/