RESEARCH ON TEMPERATURE UNIFORMITY OF LITHIUM-ION BATTERY ENERGY STORAGE UNIT AND ENERGY CONSUMPTION OF THERMAL MANAGEMENT SYSTEM

Wang Yujie, Zhong Ziqi, Xu Nuo

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 83-90.

PDF(2540 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2540 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (3) : 83-90. DOI: 10.19912/j.0254-0096.tynxb.2023-1969

RESEARCH ON TEMPERATURE UNIFORMITY OF LITHIUM-ION BATTERY ENERGY STORAGE UNIT AND ENERGY CONSUMPTION OF THERMAL MANAGEMENT SYSTEM

  • Wang Yujie, Zhong Ziqi, Xu Nuo
Author information +
History +

Abstract

Lithium-ion battery is one of the energy storage units in the new energy power system. The temperature control and uniformity of the lithium-ion battery and the energy consumption of the thermal management system are the keys to improve the reliability of the new energy power system. In this paper, we established the model of heat generation and heat transfer of lithium-ion battery, and verified the temperature rise of single battery. We proposed a side-concave liquid cooling plate and established a CFD three-dimensional numerical model to analyze the effects of flow direction and velocity, inlet vertical flow area and channel lateral flow area on the heat dissipation performance of the liquid cooling plate, and then compared the performance of the three types of liquid cooling plates. The experimental results show that increasing the flow rate can improve the heat dissipation performance but significantly increase the energy consumption. There is no liquid reflux phenomenon at the corner of the liquid cooling plate under the condition of double forward liquid flow. When the transverse flow area of the channel increases, the liquid pressure drop and the average pressure decrease. The temperature distribution of the battery tends to be smooth, which can significantly reduce energy consumption and improve the uniformity of temperature distribution. In the performance comparison of different versions, the comprehensive performance of the concave liquid cooling plate is the best.

Key words

lithium-ion batteries / battery energy storage / thermal management / liquid cooling plate / new energy power system

Cite this article

Download Citations
Wang Yujie, Zhong Ziqi, Xu Nuo. RESEARCH ON TEMPERATURE UNIFORMITY OF LITHIUM-ION BATTERY ENERGY STORAGE UNIT AND ENERGY CONSUMPTION OF THERMAL MANAGEMENT SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 83-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1969

References

[1] QIAN Z, LI Y M, RAO Z H.Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy conversion and management, 2016, 126: 622-631.
[2] LIANG L, ZHAO Y H, DIAO Y H, et al.Optimum cooling surface for prismatic lithium battery with metal shell based on anisotropic thermal conductivity and dimensions[J]. Journal of power sources, 2021, 506: 230182.
[3] 李培强, 李雄, 蔡笋, 等. 风电场含退役动力电池的混合储能系统容量优化配置[J]. 太阳能学报, 2022, 43(5): 492-498.
LI P Q, LI X, CAI S, et al.Capacity optimization configuration of hybrid energy storage system with retired power batteries in wind farms[J]. Acta energiae solaris sinica, 2022, 43(5): 492-498.
[4] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[5] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-168.
XIE X R, MA N J, LIU W, et al.Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-168.
[6] 张嘉澍, 吕泉, 郭雪丽, 等. 考虑合理弃光的配电网光伏最大接入容量研究[J]. 太阳能学报, 2023, 44(2): 418-426.
ZHANG J S, LYU Q, GUO X L, et al.Research on maximum pv access capacity in distribution network considering proper power curtailment[J]. Acta energiae solaris sinica, 2023, 44(2): 418-426.
[7] 罗芬, 凌志斌. 以容量利用率最大化为目标的电池储能系统均衡电流分析[J]. 太阳能学报, 2020, 41(4): 318-325.
LUO F, LING Z B.Balance current analysis of battery energy storage system based on capacity utilization maximization[J]. Acta energiae solaris sinica, 2020, 41(4): 318-325.
[8] AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al.Thermal modeling of a high-energy prismatic lithium-ion battery cell and module based on a new thermal characterization methodology[J]. Journal of energy storage, 2020, 32: 101707.
[9] 张天时, 高青, 王国华, 等. 热泵辅助冷却电池热管理设计及其作用分析[J]. 太阳能学报, 2018, 39(3): 713-721.
ZHANG T S, GAO Q, WANG G H, et al.Numerical model and computational analysis on battery thermal management system with heat pump auxiliary cooling[J]. Acta energiae solaris sinica, 2018, 39(3): 713-721.
[10] WU W X, WANG S F, WU W, et al.A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy conversion and management, 2019, 182: 262-281.
[11] 李淼林, 臧孟炎, 谢金红, 等. 锂离子电池组风冷散热仿真与优化[J]. 电源技术, 2019, 43(11): 1805-1809.
LI M L, ZANG M Y, XIE J H, et al.Simulation and optimization of air cooling heat dissipation of lithium-ion battery pack[J]. Chinese journal of power sources, 2019, 43(11): 1805-1809.
[12] 邹燚涛, 裴后举, 施红, 等. 某型集装箱储能电池组冷却风道设计及优化[J]. 储能科学与技术, 2020, 9(6): 1864-1871.
ZOU Y T, PEI H J, SHI H, et al.Design and optimization of the cooling duct system for the battery pack of a certain container energy storage[J]. Energy storage science and technology, 2020, 9(6): 1864-1871.
[13] XU X H, LI W Z, XU B, et al.Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions[J]. Applied energy, 2019, 250: 404-412.
[14] CHEN S Q, PENG X B, BAO N S, et al.A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module[J]. Applied thermal engineering, 2019, 156: 324-339.
[15] CHEN K, HOU J S, SONG M X, et al.Design of battery thermal management system based on phase change material and heat pipe[J]. Applied thermal engineering, 2021, 188: 116665.
[16] 沈朝, 计长勇, 张春晓. 外翅片强化PV/PCM系统热管理性能研究[J]. 太阳能学报, 2022, 43(9): 52-56.
SHEN C, JI C Y, ZHANG C X.Feasible study on enhancing thermal regulation of PV/PCM systems by external fins[J]. Acta energiae solaris sinica, 2022, 43(9): 52-56.
[17] 杨梓堙, 竺玉强, 王亚平, 等. 基于PCM-液冷复合的锂离子电池热管理研究[J]. 电源技术, 2022, 46(12): 1388-1392.
YANG Z Y, ZHU Y Q, WANG Y P, et al.Thermal management of lithium-ion battery based on PCM-liquid cooling coupling[J]. Chinese journal of power sources, 2022, 46(12): 1388-1392.
[18] 谢忱创. 基于复合相变材料与液冷耦合的电池组热性能研究[D]. 重庆: 重庆交通大学, 2021.
XIE C C.Study on thermal performance of battery pack based on coupling of composite phase change material and liquid cooling[D]. Chongqing: Chongqing Jiaotong University, 2021.
[19] SHENG L, ZHANG H Y, ZHANG H, et al.Lightweight liquid cooling based thermal management to a prismatic hard-cased lithium-ion battery[J]. International journal of heat and mass transfer, 2021, 170: 120998.
[20] 叶海军. 锂离子电池组微通道液冷系统的结构设计与优化[D]. 镇江: 江苏大学, 2018.
YE H J.Structural design and optimization of microchannel liquid cooling system for lithium ion battery pack[D]. Zhenjiang: Jiangsu University, 2018.
[21] SATO N, YAGI K.Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J]. JSAE review, 2000, 21(2): 205-211.
[22] 张爽. 锂离子电池储能集装箱风冷式热管理系统仿真分析及优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG S.Simulation analysis and optimization design of air-cooled thermal management system for lithium-ion battery energy storage container[D]. Harbin: Harbin Institute of Technology, 2021.
[23] 姚薇. 基于直冷及相变材料散热的电池组热管理系统研究[D]. 杭州: 浙江大学, 2022.
YAO W.Research on thermal management system of battery pack based on direct cooling and phase change material heat dissipation[D]. Hangzhou: Zhejiang University, 2022.
[24] BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems[J]. Journal of the electrochemical society, 1985, 132(1): 5.
PDF(2540 KB)

Accesses

Citation

Detail

Sections
Recommended

/