STUDY ON TRANSIENT OVERVOLTAGE OPTIMIZATION STRATEGY OF DC CLUSTER IN SENDING-END GRID CONSIDERING MULTI-ENERGY MATCHING

Niu Shuanbao, Cui Wei, Zhang Wenchao, Wang Ying, Huang Minghui, Wang Cong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 103-113.

PDF(1151 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1151 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 103-113. DOI: 10.19912/j.0254-0096.tynxb.2023-1992

STUDY ON TRANSIENT OVERVOLTAGE OPTIMIZATION STRATEGY OF DC CLUSTER IN SENDING-END GRID CONSIDERING MULTI-ENERGY MATCHING

  • Niu Shuanbao1, Cui Wei2, Zhang Wenchao3, Wang Ying2, Huang Minghui3, Wang Cong2
Author information +
History +

Abstract

Aiming at the problem that the DC cluster is easily affected by transient overvoltage when DC fault occurs in the DC cluster access system with large-scale wind power and photovoltaic power generation resources, a transient overvoltage optimization strategy of DC cluster in sending-end grid considering multi-energy matching is studied in this paper. Firstly, based on the simplified equivalent system of the sending-end grid, the transient overvoltage variation characteristics of the sending-end grid under large-scale DC cluster access are analyzed, and the transient overvoltage model of the DC cluster is established. Secondly, the transient overvoltage model of DC cluster is partially modified considering that multi-energy equipment is connected to the near end of DC cluster. Then, taking the transient overvoltage at the proximal end of the DC cluster and the adjustment cost of multi-energy supporting equipment at the proximal end of the DC cluster as the optimization objectives, the transient overvoltage optimization model of the sending-end grid is established. Combined with neural network algorithm and genetic algorithm, the optimal solution algorithm for the transient overvoltage of the sending-end grid is proposed. Finally, based on the operation data of DC transmission channel in a certain region in northwest China, a simulation model is built to analyze the system transient overvoltage under DC fault. The results show that the model established in this paper has a significant effect on the suppression of transient overvoltage of DC cluster output bus.

Key words

transient overvoltage / sending-end grid / DC cluster / multi-energy matching / neural network

Cite this article

Download Citations
Niu Shuanbao, Cui Wei, Zhang Wenchao, Wang Ying, Huang Minghui, Wang Cong. STUDY ON TRANSIENT OVERVOLTAGE OPTIMIZATION STRATEGY OF DC CLUSTER IN SENDING-END GRID CONSIDERING MULTI-ENERGY MATCHING[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 103-113 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1992

References

[1] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[3] 张鑫, 刘飞, 王世斌, 等. 提升特高压直流送端电网新能源消纳水平措施[J]. 电力系统及其自动化学报, 2022, 34(6): 135-141.
ZHANG X, LIU F, WANG S B, et al.Measures to improve the new energy consumption level of UHVDC sending-end power gird[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 135-141.
[4] 方必武, 姜拓, 陈亦平, 等. 促进可再生能源消纳的跨省区实时优化调度方法及应用[J]. 电力系统自动化, 2023, 47(15): 111-121.
FANG B W, JIANG T, CHEN Y P, et al.Cross-provincial real-time optimal dispatching method and application for promoting renewable energy accommodation[J]. Automation of electric power systems, 2023, 47(15): 111-121.
[5] 田颢璟, 孙大卫, 刘辉, 等. 短路故障清除时刻直驱风电机组机端暂态过电压研究[J]. 太阳能学报, 2023, 44(1): 247-256.
TIAN H J, SUN D W, LIU H, et al.Research on transient overvoltage of PMSG terminal at fault clearing time[J]. Acta energiae solaris sinica, 2023, 44(1): 247-256.
[6] 李帛洋, 晁璞璞, 徐式蕴, 等. 风电经特高压直流送出系统的暂态过电压问题研究综述[J]. 电力自动化设备, 2022, 42(3): 26-35.
LI B Y, CHAO P P, XU S Y, et al.Review on transient overvoltage issues of wind power transmission system via UHVDC[J]. Electric power automation equipment, 2022, 42(3): 26-35.
[7] 张寒. 高比例新能源经直流送出系统的建模及暂态过电压问题研究[D]. 北京: 华北电力大学, 2021.
ZHANG H.Modeling of high-proportion new energy transmission system via DC and study on transient overvoltage[D]. Beijing: North China Electric Power University, 2021.
[8] 朱丽萍, 刘文颖, 邵冲, 等. 基于调相机与SVC协调的抑制高压直流送端风机脱网的控制策略[J]. 电力自动化设备, 2021, 41(6): 107-115.
ZHU L P, LIU W Y, SHAO C, et al.Control strategy of suppressing wind turbine tripping based on coordination between synchronous condenser and SVC in sending-end network of HVDC[J]. Electric power automation equipment, 2021, 41(6): 107-115.
[9] 周登钰, 张新燕, 赵理飞, 等. 含大规模风光功率汇集的多端柔性直流系统分析[J]. 太阳能学报, 2020, 41(2): 93-100.
ZHOU D Y, ZHANG X Y, ZHAO L F, et al.Analysis of multi-terminal flexible DC system with large scale power collection[J]. Acta energiae solaris sinica, 2020, 41(2): 93-100.
[10] 衣立东, 摆世彬, 张文朝, 等. 综合能源交直流混联外送系统暂态过电压分析与快速估算[J]. 太阳能学报, 2023, 44(6): 122-129.
YI L D, BAI S B, ZHANG W C, et al.Transient overvoltage analysis and rapid estimation of integrated energy AC-DC hybrid transmission system[J]. Acta energiae solaris sinica, 2023, 44(6): 122-129.
[11] 李帛洋, 晁璞璞, 李卫星, 等. 风电经特高压直流送出系统的暂态过电压计算方法[J]. 电机与控制学报, 2021, 25(12): 11-18.
LI B Y, CHAO P P, LI W X, et al.Transient overvoltage calculation method of wind power transmission system via UHVDC[J]. Electric machines and control, 2021, 25(12): 11-18.
[12] 王蒙, 张文朝, 汪莹, 等. 高比例光伏接入的电力系统暂态过电压控制策略[J]. 太阳能学报, 2023, 44(10): 148-155.
WANG M, ZHANG W C, WANG Y, et al.Transient overvoltage control strategy of power system considering high proportion photovoltaic access[J]. Acta energiae solaris sinica, 2023, 44(10): 148-155.
[13] 吴林林, 李蕴红, 于思奇, 等. 基于短路比指标的风电汇集系统稳定性分析[J]. 电力自动化设备, 2022, 42(8): 72-78.
WU L L, LI Y H, YU S Q, et al.Stability analysis of dense wind power area based on short circuit ratio index[J]. Electric power automation equipment, 2022, 42(8): 72-78.
[14] 赵晋泉, 朱尧靓, 潘尔生, 等. 适用于大规模新能源接入直流送端电网的暂态压升严重性指标研究[J]. 南方电网技术, 2020, 14(12): 1-9.
ZHAO J Q, ZHU Y L, PAN E S, et al.Study on transient voltage rise severity index for the high renewable power-penetrated UHVDC sending-end power grid[J]. Southern power system technology, 2020, 14(12): 1-9.
[15] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一): 送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4404.
HE G Q, WANG W S, LIU C, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅰ): transient reactive power and voltage modeling of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4404.
[16] 金一丁, 贺静波, 李光辉, 等. 风电基地经特高压直流送出系统换相失败故障(二): 送端风电机组暂态无功电压特性与作用机理分析[J]. 中国电机工程学报, 2022, 42(13): 4738-4749.
JIN Y D, HE J B, LI G H, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅱ): characteristics and mechanism analysis of transient reactive power and voltage of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(13): 4738-4749.
[17] 李光辉, 王伟胜, 何国庆, 等. 风电基地经特高压直流送出系统换相失败故障(三): 送端风电机组暂态过电压抑制措施[J]. 中国电机工程学报, 2022, 42(14): 5079-5089.
LI G H, WANG W S, HE G Q, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅲ): transient overvoltage suppression measures of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(14): 5079-5089.
[18] 田旭, 刘飞, 张君, 等. 基于能量同步转换技术的高比例新能源外送地区暂态过电压抑制研究[J]. 南方电网技术, 2022, 16(10): 95-103.
TIAN X, LIU F, ZHANG J, et al.Transient overvoltage suppression research in high penetration of renewable energy sending area based on energy synchronous conversion technology[J]. Southern power system technology, 2022, 16(10): 95-103.
[19] 肖超, 韩伟, 李琼林, 等. 基于虚拟电阻的高压直流换相失败期间送端电网暂态过电压抑制方法[J]. 电力系统保护与控制, 2021, 49(23): 122-129.
XIAO C, HAN W, LI Q L, et al.A suppression method for overvoltage of a sending end grid caused by commutation failure based on virtual resistance[J]. Power system protection and control, 2021, 49(23): 122-129.
[20] 鲁华威. 抑制直流送端系统暂态过电压的参数优化和协调控制方法研究[D]. 吉林: 东北电力大学, 2020.
LU H W.Study on parameter optimization and coordinated control method for suppressing transient overvoltage in DC transmission system[D]. Jilin: Northeast Dianli University, 2020.
[21] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46-55.
CHEN H H, LU H W, WANG C J, et al.Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric power automation equipment, 2020, 40(10): 46-55.
[22] 沈璐. 考虑电网电压调节的区域综合能源系统协调优化运行研究[D]. 南京: 东南大学, 2022.
SHEN L.Study on coordinated and optimal operation of regional comprehensive energy system considering grid voltage regulation[D]. Nanjing: Southeast University, 2022.
[23] 黄小华, 李德源, 吕文阁, 等. 基于人工神经网络模型的风速预测[J]. 太阳能学报, 2011, 32(2): 193-197.
HUANG X H, LI D Y, LYU W G, et al.Wind speed forecasting with artificial neural networks model[J]. Acta energiae solaris sinica, 2011, 32(2): 193-197.
[24] 邵军辉. 基于遗传算法改进BP神经网络模型的短期负荷预测[D]. 大庆: 东北石油大学, 2023.
SHAO J H.Short-term load forecasting based on genetic algorithm improved BP neural network model[D]. Daqing: Northeast Petroleum University, 2023.
PDF(1151 KB)

Accesses

Citation

Detail

Sections
Recommended

/