ANALYSIS OF COUPLING EFFECT OF MAINDRIVE CHAIN SYSTEM OF WIND TURBINE ON SYSTEM CHARACTERISTICS

Fei Xiang, Jiang Hong, Zhou Jianxing, Zhang Xiangfeng, Shang Jun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 387-397.

PDF(10022 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(10022 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 387-397. DOI: 10.19912/j.0254-0096.tynxb.2023-1996

ANALYSIS OF COUPLING EFFECT OF MAINDRIVE CHAIN SYSTEM OF WIND TURBINE ON SYSTEM CHARACTERISTICS

  • Fei Xiang, Jiang Hong, Zhou Jianxing, Zhang Xiangfeng, Shang Jun
Author information +
History +

Abstract

Aiming at the coupling response of each subsystem in wind turbine transmission chain during operation, taking the main transmission system of a 2 MW wind turbine as the research object, considering the time-varying meshing stiffness of gears and the effect of error excitation, a dynamic model of planet-fixed axis coupling system considering the flexibility of axes was established. By Solving the natural frequency based on the eigenvalue problem was solved to describe the influence of coupling effect on the inherent characteristics of the sub-system and the mode characteristics of the system. The Newmark time-domain integral method was used to solve the system dynamics equations before and after coupling, and the changing law of system dynamic characteristics before and after connecting the subsystems were investigated. The results show that the unique vibration modes of the planetary transmission system and the fixed shaft transmission system are still retained in the modal shapes of the wind power main transmission system, and most vibration modes show the coupling between the single vibration modes of multiple subsystems or several vibration modes of the parallel transmission system. The coupling effect causes the fluctuation of each subsystem to increase, and the engage frequency of epicyclic transmission and its frequency doubling component appear in large numbers in the low frequency band of parallel transmission.

Key words

wind turbines / dynamic modding / vibration response / model analysis / coupling effect

Cite this article

Download Citations
Fei Xiang, Jiang Hong, Zhou Jianxing, Zhang Xiangfeng, Shang Jun. ANALYSIS OF COUPLING EFFECT OF MAINDRIVE CHAIN SYSTEM OF WIND TURBINE ON SYSTEM CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 387-397 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1996

References

[1] BALAT M.A review of modern wind turbine technology[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2009, 31(17): 1561-1572.
[2] MARTÍNEZ A, PRATS P. Wind technology issues[J].Renewable energy, 1999, 16(1-4): 835-839.
[3] PARK Y, PARK H, MA Z, et al.Multibody dynamic analysis of a wind turbine drivetrain in consideration of the shaft bending effect and a variable gear mesh including eccentricity and nacelle movement[J]. Frontiers in energy research, 2021, 8: 604414.
[4] LEITHEAD W, ROGERS M.A comparison of the performance of constant speed HAWT's[C]//International Conference on Renewable Energy-Clean Power 2001.London, UK, 1993.
[5] 卜忠红, 刘更, 吴立言. 行星齿轮传动动力学研究进展[J]. 振动与冲击, 2010, 29(9): 161-166, 250.
BU Z H, LIU G, WU L Y.Research advances in planetary gear trains dynamics[J]. Journal of vibration and shock, 2010, 29(9): 161-166, 250.
[6] 邱星辉, 韩勤锴, 褚福磊. 风力机行星齿轮传动系统动力学研究综述[J]. 机械工程学报, 2014, 50(11): 23-36.
QIU X H, HAN Q K, CHU F L.Review on dynamic analysis of wind turbine geared transmission systems[J]. Journal of mechanical engineering, 2014, 50(11): 23-36.
[7] PARKER R G, AGASHE V, VIJAYAKAR S M.Dynamic response of a planetary gear system using a finite element/contact mechanics model[J]. Journal of mechanical design, 2000, 122(3): 304-310.
[8] KIRACOFE D R, PARKER R G.Structured vibration modes of general compound planetary gear systems[J]. Journal of vibration and acoustics, 2007, 129(1): 1-16.
[9] AMBARISHA V K, PARKER R G.Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of sound and vibration, 2007, 302(3): 577-595.
[10] KAHRAMAN A.Planetary gear train dynamics[J]. Journal of mechanical design, 1994, 116: 713-720.
[11] 常乐浩. 平行轴齿轮传动系统动力学通用建模方法与动态激励影响规律研究[D]. 西安: 西北工业大学, 2014.
CHANG (L/Y)H. Research on general modeling method of parallel shaft gear transmission system dynamics and influence law of dynamic excitation[D]. Xi’an: Northwestern Polytechnical University, 2014.
[12] 王胜男, 阿达依·谢尔亚孜旦, 章翔峰, 等. 考虑轴柔性的二级齿轮减速器振动噪声研究[J]. 西安交通大学学报, 2020, 54(9): 117-127.
WANG S N, ADAYI Xieeryazidan, ZHANG X F, et al.Vibration and noise analysis for two-stage gear reducer considering shaft flexibility[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 117-127.
[13] LIU Y Q, LONG Q, YANG Y P, et al.Modal analysis of high-speed helical gear of wind turbine driven system[C]//Proceedings of the International Conference on Information, Electronic and Computer Science. Qingdao, China, 2009: 351-354.
[14] WANG J G, WANG Y, AN Y T, et al.Research on natural characteristics of helical gear in gearbox for wind turbine generator[C]//Key Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2011: 2054-2057.
[15] 向玲, 高楠, 唐亮, 等. 内外激励下风电齿轮传动系统的非线性动力学特性[J]. 振动与冲击, 2018, 37(5): 126-132.
XIANG L, GAO N, TANG L, et al.Nonlinear dynamic features of wind turbine’s gear sytems subjected to internal and external excitations[J]. Journal of vibration and shock, 2018, 37(5): 126-132.
[16] XU Z, PAN Z P.Influence of different flexible drive train models on the transient responses of DFIG wind turbine[C]//2011 International Conference on Electrical Machines and Systems. Beijing, China, 2011: 1-6.
[17] SHI W, KIM C W, CHUNG C W, et al.Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model[J]. International journal of precision engineering and manufacturing, 2013, 14(1): 153-159.
[18] ZHAI H F, ZHU C C, SONG C S, et al.Dynamic modeling and analysis for transmission system of high-power wind turbine gearbox[J]. Journal of mechanical science and technology, 2015, 29(10): 4073-4082.
[19] 陈锐博, 刘长钊, 秦大同. 风电一体化齿轮-发电机系统机电-刚柔耦合动态特性[J]. 太阳能学报, 2023, 44(7): 328-338.
CHEN R B, LIU C Z, QIN D T.Dynamic characteristics of electromechanical-rigid-flexible coupling of wind turbine gearbox-generator integrated system[J]. Acta energiae solaris sinica, 2023, 44(7): 328-338.
[20] 张磊, 王仲, 张明, 等. 动态齿侧间隙与啮合角作用下行星齿轮传动系统动力学建模与分析[J]. 太阳能学报, 2023, 44(7): 311-317.
ZHANG L, WANG Z, ZHANG M, et al.Dynamic modeling and analysis for planetary gear transmission system with dynamic backlash and pressure angle[J]. Acta energiae solaris sinica, 2023, 44(7): 311-317.
[21] 张策. 机械动力学[M]. 北京: 高等教育出版社, 2000.
ZHANG C.Dynamics of machinery[M]. Beijing: Higher Education Press, 2000.
[22] MA H, LI Z W, FENG M J, et al.Time-varying mesh stiffness calculation of spur gears with spalling defect[J]. Engineering failure analysis, 2016, 66: 166-176.
[23] 陈锐博, 张建杰, 周建星, 等. 考虑齿面接触特性的直齿轮啮合刚度研究[J]. 机械传动, 2016, 40(10): 43-47, 53.
CHEN R B, ZHANG J J, ZHOU J X, et al.Study on the meshing stiffness of spur gear considering contact characteristic of tooth surface[J]. Journal of mechanical transmission, 2016, 40(10): 43-47, 53.
[24] 常乐浩, 刘更, 吴立言. 齿轮综合啮合误差计算方法及对系统振动的影响[J]. 机械工程学报, 2015, 51(1): 123-130.
CHANG L H, LIU G, WU L Y.Determination of composite meshing errors and its influence on the vibration of gear system[J]. Journal of mechanical engineering, 2015, 51(1): 123-130.
[25] SAXENA A, CHOUKSEY M, PAREY A.Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system[J]. Mechanism and machine theory, 2017, 107: 261-273.
[26] 秦大同, 杨军, 周志刚, 等. 变载荷激励下风电行星齿轮系统动力学特性[J]. 中国机械工程, 2013, 24(3): 295-301.
QIN D T, YANG J, ZHOU Z G, et al.Dynamics characteristic of planetary gear system of wind turbines under varying load[J]. China mechanical engineering, 2013, 24(3): 295-301.
PDF(10022 KB)

Accesses

Citation

Detail

Sections
Recommended

/