NUMERICAL ANALYSIS AND EXPERIMENTAL RESEARCH OF PHASE CHANGE HEAT STORAGE BASED ON BIONICS

Zhang Lin, Chen Xiuqin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 1-10.

PDF(5732 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5732 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 1-10. DOI: 10.19912/j.0254-0096.tynxb.2023-2009

NUMERICAL ANALYSIS AND EXPERIMENTAL RESEARCH OF PHASE CHANGE HEAT STORAGE BASED ON BIONICS

  • Zhang Lin, Chen Xiuqin
Author information +
History +

Abstract

Phase change heat storage technology is one of the efficient means of heat storage in engineering applications. However, phase change materials have the problem of low thermal conductivity, which seriously limits their work efficiency. Therefore, it is necessary to optimize the structure of phase change heat storage devices to improve heat storage efficiency. Na2S2O3·5H2O and CH3COONa·3H2O were selected as phase change materials. Six phase change heat storage models were designed based on bionic structure. The melting and solidification processes of the two phase change materials in the six heat storage models were simulated and analyzed. Finally, based on the numerical simulation results and taking into account the heat storage and release processes, a small biomimetic cross seasonal phase change heat storage experimental platform was built. This article presents temperature changes of two phase change materials at each temperature measuring point in two models under the operating conditions of 75 ℃ and 0.1 m3/h. The results indicate that one heat storage model is more suitable for using Na2S2O3·5H2O as phase change material, while the other model is more suitable for using CH3COONa·3H2O as phase change material.

Key words

solar energy / heat storage / phase change heat storage / biomimetic / numerical analysis / experimental study

Cite this article

Download Citations
Zhang Lin, Chen Xiuqin. NUMERICAL ANALYSIS AND EXPERIMENTAL RESEARCH OF PHASE CHANGE HEAT STORAGE BASED ON BIONICS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 1-10 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2009

References

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] 樊栓狮. 储能材料与技术[M]. 北京: 化学工业出版社, 2004.
FAN S S.Energy storage materials and technology[M]. Beijing: Chemical Industry Press, 2004.
[3] HUANG Y P, DENG Z L, CHEN Y P, et al.Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers[J]. Applied energy, 2023, 335: 120745.
[4] 方桂花, 刘颖杰, 王峰, 等. 基于螺旋盘管蓄热装置放热实验研究[J]. 太阳能学报, 2022, 43(12): 166-171.
FANG G H, LIU Y J, WANG F, et al.Experimental research on heat release of heat storage device based on spiral coil[J]. Acta energiae solaris sinica, 2022, 43(12): 166-171.
[5] 田扬, 赵明, 胡明禹, 等. 加肋旋转对相变蓄热器蓄热性能的影响及场协同分析[J]. 太阳能学报, 2021, 42(3): 395-400.
TIAN Y, ZHAO M, HU M Y, et al.Effect of ribbed rotation on heat storage performance of phase change thermal storage unit and field synergy analysis[J]. Acta energiae solaris sinica, 2021, 42(3): 395-400.
[6] KAUFMANN J, WINNEFELD F.Seasonal heat storage in calcium sulfoaluminate based hardened cement pastes-experiences with different prototypes[J]. Journal of energy storage, 2019, 25: 100850.
[7] 韩涛, 马彦花, 方嘉宾, 等. 管壳式太阳能相变储热器传热特性的数值研究[J]. 太阳能学报, 2023, 44(3): 525-532.
HAN T, MA Y H, FANG J B, et al.Numerical simulation study of heat transfer characteristics on solar tube-and-shell phase change heat storage unit[J]. Acta energiae solaris sinica, 2023, 44(3): 525-532.
[8] 张馨文, 翟鑫钰, 董辈辈, 等. 改性正十八烷相变纳米胶囊制备表征及在太阳能建筑中的应用[J]. 太阳能学报, 2023, 44(4): 290-298.
ZHANG X W, ZHAI X Y, DONG B B, et al.Preparation and characterization of modified SiO2/n-octadecane phase change nanocapusules and their application in solar building[J]. Acta energiae solaris sinica, 2023, 44(4): 290-298.
[9] MA Z W, BAO H S, ROSKILLY A P.Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage[J]. Solar energy materials and solar cells, 2017, 172: 99-107.
[10] 侯俊英, 杨金星, 郝建军, 等. 十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟[J]. 太阳能学报, 2023, 44(11): 434-442.
HOU J Y, YANG J X, HAO J J, et al.Fabrication of octadecanol/ZIF-8 shape stablized composite phase change material and thermal simulation of heat accumulator[J]. Acta energiae solaris sinica, 2023, 44(11): 434-442.
[11] DANNEMAND M, DRAGSTED J, FAN J H, et al.Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures[J]. Applied energy, 2016, 169: 72-80.
[12] 吕喜风, 白金刚, 时春辉, 等. 乳液聚合法制备石蜡基相变储能材料及热物性研究[J]. 太阳能学报, 2022, 43(11): 392-398.
LYU X F, BAI J G, SHI C H, et al.Preparation and thermophysical properties of paraffin-based phase change energy storage materials by emulsion polymerization[J]. Acta energiae solaris sinica, 2022, 43(11): 392-398.
[13] 李露露, 尹应德, 刘世杰, 等. 供暖水温对低温空气源热泵制热性能影响的实验研究[J]. 太阳能学报, 2023, 44(4): 377-383.
LI L L, YIN Y D, LIU S J, et al.Experimental study on effect of heating water temperature on heating performance of low-temperature air source heat pump[J]. Acta energiae solaris sinica, 2023, 44(4): 377-383.
[14] 方桂花, 连小刚, 张振华, 等. 基于圆柱形单元的储热装置放热实验研究[J]. 太阳能学报, 2022, 43(10): 452-457.
FANG G H, LIAN X G, ZHANG Z H, et al.Experimental research on heat release of heat storage device based on cylindrical unit[J]. Acta energiae solaris sinica, 2022, 43(10): 452-457.
[15] 沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376.
SHEN Y L, ZHANG P W, LIU S L.Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC journal, 2022, 73(10): 4366-4376.
[16] 梁天生, 张拴羊, 白志蕊, 等. 套管式相变储热单元强化换热数值研究[J]. 热能动力工程, 2021, 36(4): 43-50.
LIANG T S, ZHANG S Y, BAI Z R, et al.Numerical study on heat transfer enhancement of the sleeve tube phase change heat storage unit[J]. Journal of engineering for thermal energy and power, 2021, 36(4): 43-50.
[17] SOTTA N, FUJIWARA T.Preparing thin cross sections of Arabidopsis roots without embedding[J]. BioTechniques, 2017, 63(6): 281-283.
[18] ATKINSON J A, WELLS D M.An updated protocol for high throughput plant tissue sectioning[J]. Frontiers in plant science, 2017, 8: 1721.
[19] CHOPIN J, LAGA H, HUANG C Y, et al.RootAnalyzer: a cross-section image analysis tool for automated characterization of root cells and tissues[J]. PLoS One, 2015, 10(9): e0137655.
[20] 陈黎, 胡芃, 章高伟. 不同结构组合式相变材料换热器性能分析[J]. 太阳能学报, 2021, 42(6): 177-183.
CHEN L, HU P, ZHANG G W.Performance analysis of heat storage exchanger with different structures of combined type phase change materials[J]. Acta energiae solaris sinica, 2021, 42(6): 177-183.
[21] 龙伟月, 袁艳平, 曹晓玲, 等. 相变材料与热边界相对位置对环形单元熔化传热影响规律的数值分析[J]. 太阳能学报, 2021, 42(3): 389-394.
LONG W Y, YUAN Y P, CAO X L, et al.Numerical analysis of influence of relative position of phase change material and thermal boundary on melting characteristics of annular unit[J]. Acta energiae solaris sinica, 2021, 42(3): 389-394.
[22] KARAMI R, KAMKARI B.Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units[J]. Applied thermal engineering, 2019, 146: 45-60.
[23] PEREIRA DA CUNHA J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials: a review[J]. Applied energy, 2016, 177: 227-238.
[24] ZALBA B, MARíN J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied thermal engineering, 2003, 23(3): 251-283.
[25] AFSHARI F, SÖZEN A, KHANLARI A, et al. Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater[J]. Renewable energy, 2020, 158: 297-310.
[26] AFSHARI F, KHANLARI A, TUNCER A D, et al.Dehumidification of sewage sludge using Quonset solar tunnel dryer: an experimental and numerical approach[J]. Renewable energy, 2021, 171: 784-798.
PDF(5732 KB)

Accesses

Citation

Detail

Sections
Recommended

/