MULTI-CRITERIA EVALUATION OF FLOATING OFFSHORE WIND TURBINE SUBSTRUCTURE SCHEMES BASED ON ENTROPY-TOPSIS METHOD

Sun Miaojun, Chen Yujing, Yang Fengyan, Zhan Chenling, Yuan Wenyong, Zhang Min

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 406-414.

PDF(1120 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1120 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 406-414. DOI: 10.19912/j.0254-0096.tynxb.2023-2016

MULTI-CRITERIA EVALUATION OF FLOATING OFFSHORE WIND TURBINE SUBSTRUCTURE SCHEMES BASED ON ENTROPY-TOPSIS METHOD

  • Sun Miaojun1, Chen Yujing2, Yang Fengyan3, Zhan Chenling2, Yuan Wenyong2, Zhang Min2
Author information +
History +

Abstract

With the exploitation of offshore wind power moving to the deep sea, the floating offshore wind turbine (FOWT) structure is regarded as the more competitive solution. Because of its harsh marine environment and high construction cost, how to evaluate the design of FOWT structure reasonably has got attention to the industry. In this paper, a multi-criteria evaluation system for FOWT schemes is established from the perspectives of function, safety and economy, and related evaluation indexes are defined. Based on the Entropy-TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method, a multi-criteria evaluation model for FOWT is established. Two submersible FOWT structures are applied to illustrate the proposed evaluation model. Through case analysis, it is proved that the evaluation model can evaluate FOWT schemes from an objective point of view. The optimization suggestion proposed based on the evaluation model can help to improve the comprehensive performance of the scheme.

Key words

offshore wind turbine / entropy TOPSIS method / optimized decision / multiple-criteria / evaluation model

Cite this article

Download Citations
Sun Miaojun, Chen Yujing, Yang Fengyan, Zhan Chenling, Yuan Wenyong, Zhang Min. MULTI-CRITERIA EVALUATION OF FLOATING OFFSHORE WIND TURBINE SUBSTRUCTURE SCHEMES BASED ON ENTROPY-TOPSIS METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 406-414 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2016

References

[1] 刘颖明, 崔家平, 王晓东, 等. 不同类型漂浮式风电场内机组塔基荷载研究[J]. 太阳能学报, 2022, 43(12): 407-414.
LIU Y M, CUI J P, WANG X D, et al.Research on tower base load of wind turbines in different types of floating wind farm[J]. Acta energiae solaris sinica, 2022, 43(12): 407-414.
[2] 和庆冬, 王月, 张敏. 考虑潮汐影响下浅水浮式风电结构动力响应研究[J]. 太阳能学报, 2023, 44(2): 109-115.
HE Q D, WANG Y, ZHANG M.Study on dynamic response of shallow water floating wind turbine considering tide[J]. Acta energiae solaris sinica, 2023, 44(2): 109-115.
[3] 康海贵, 李荣敏, 李玉刚. 近海重力式风机基础结构模糊选型优化[J]. 水电能源科学, 2010, 28(9): 167-170.
KANG H G, LI R M, LI Y G.Fuzzy optimal decision of offshore wind farm gravity foundation[J]. Water resources and power, 2010, 28(9): 167-170.
[4] 翟钢军, 李玉刚, 康海贵. 海上风机桩式基础结构形式综合模糊优选[J]. 中国工程科学, 2010, 12(11): 40-46.
ZHAI G J, LI Y G, KANG H G.Integrated fuzzy lectotype optimization for pile-style foundations of offshore wind turbines[J]. Engineering sciences, 2010, 12(11): 40-46.
[5] 孟珣, 刘萌, 唐小惠, 等. 海上大功率风力机固定式支撑结构方案比较分析[J]. 太阳能学报, 2018, 39(11): 3215-3223.
MENG X, LIU M, TANG X H, et al.Comparative analysis of bottom-fixed supports of large-capacity offshore wind turbines[J]. Acta energiae solaris sinica, 2018, 39(11): 3215-3223.
[6] KOLIOS A, COLLU M, CHAHARDEHI A, et al.A multi-criteria decision making method to compare support structures for offshore wind turbines[C]//European Wind Energy Conference and Exhibition. Warsaw, Poland, 2010.
[7] MARTIN H, SPANO G, KÜSTER J F, et al. Application and extension of the TOPSIS method for the assessment of floating offshore wind turbine support structures[J]. Ships and offshore structures, 2013, 8(5): 477-487.
[8] 臧志鹏, 张帆, 张翔宇, 等. 半潜式风机基础运动响应特性试验研究[C]//第二十届中国海洋(岸)工程学术讨论会论文集(上), 湛江, 中国, 2022: 87-92.
ZANG Z P, ZHANG F, ZHANG X Y,et al.Experimental study of kinematic response characteristics of semi-submersible wind turbine foundation[C]//Proceedings of the 20th China Ocean (Offshore) Engineering Symposium (above), Zhanjiang, China, 2022: 87-92.
[9] BENASSAI G, CAMPANILE A, PISCOPO V, et al. Optimization of mooring systems for floating offshore wind turbines[J]. Coastal engineering journal, 2015, 57(4): 1550021-1-1550021-19.
[10] 单铁兵. 半潜式支持平台系泊系统的设计方法及应用[J]. 海洋工程, 2020, 38(5): 1-11.
SHAN T B.Design method and application of mooring system for semi-submersible support platform[J]. The ocean engineering, 2020, 38(5): 1-11.
[11] BAK C, ZAHLE F, BITSCHE R,et al.The DTU 10-MW reference wind turbine[C]//Danish Wind Power Research, Fredericia, Denmark, 2013.
[12] BERTHELSEN P A.Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m[R]. London: Albawaba Ltd, 2015.
[13] 王开放, 朱艳, 俞梅欣, 等. 海上风机吸力式筒形基础抗压承载模式研究[J]. 工程地质学报, 2022, 30(5): 1753-1761.
WANG K F, ZHU Y, YU M X, et al.Bearing capacity model of sunction bucket foundation for offshore wind turbine[J]. Journal of engineering geology, 2022, 30(5): 1753-1761.
[14] JOHANNESSEN K, MELING T S, HAYER S.Joint distribution for wind and waves in the northern north sea[C]//The Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001.
PDF(1120 KB)

Accesses

Citation

Detail

Sections
Recommended

/