OVERVIEW OF WAVE ENERGY CONVERTER AND CONTROL METHODS IN LOW ENERGY DENSITY SEAS

Wang Zhenchun, Peng Jianguo, Huang Yong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 654-662.

PDF(1096 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1096 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 654-662. DOI: 10.19912/j.0254-0096.tynxb.2023-2023

OVERVIEW OF WAVE ENERGY CONVERTER AND CONTROL METHODS IN LOW ENERGY DENSITY SEAS

  • Wang Zhenchun1,2, Peng Jianguo1,2, Huang Yong1,2
Author information +
History +

Abstract

Firstly, the research status in the field of wave energy generation was systematically discuss, and the basic principles and device classification of wave energy generation were introduced in detail. Application examples of wave energy converter in conventional and low energy density seas are listed. Secondly, the control methods of wave energy converter and their applications in low energy density sea were introduced from multiple perspectives such as passive damping control, reactive power control, and intelligent control. Finally, the development direction of future wave energy power generation technology is prospected. The research results point out that future research trends will mainly focus on wave energy control methods that integrate multiple algorithms and offshore wave energy power generation.

Key words

wave energy / low energy density / wave energy converter / maximum wave energy capture

Cite this article

Download Citations
Wang Zhenchun, Peng Jianguo, Huang Yong. OVERVIEW OF WAVE ENERGY CONVERTER AND CONTROL METHODS IN LOW ENERGY DENSITY SEAS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 654-662 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2023

References

[1] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6): 1711-1716.
JIANG B, DING J, WU H, et al.Wave energy resource assessment along bohai sea,yellow sea and east china sea[J]. Acta energiae solaris sinica, 2017, 38(6): 1711-1716.
[2] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[3] 闻斌, 薛彦广, 张芳苒, 等. 中国海波浪能资源分析[J]. 海洋预报, 2013, 30(2): 36-41.
WEN B, XUE Y G, ZHANG F R, et al.Numerical simulation of wave energy resources in the China Sea[J]. Marine forecasts, 2013, 30(2): 36-41.
[4] FAEDO N, SCARCIOTTI G, ASTOLFI A, et al.Energy-maximising control of wave energy converters using a moment-domain representation[J]. Control engineering practice, 2018, 81: 85-96.
[5] 邱孟, 杨俊华, 林汇金, 等. 先进控制技术在波浪发电系统中的应用[J]. 电机与控制应用, 2021, 48(2): 13-21.
QIU M, YANG J H, LIN H J, et al.Application of modern control technology in wave energy conversion system[J]. Electric machines & control application, 2021, 48(2): 13-21.
[6] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63-75.
LIU Y J, WU S, WANG D S, et al.Research progress of ocean wave energy converters[J]. Journal of Shandong University (engineering science), 2021, 51(5): 63-75.
[7] 王振春, 栾锋, 王年果, 等. 模型预测控制在波浪能上应用的现状与挑战[J]. 控制工程, 2022, 29(9): 1631-1637.
WANG Z C, LUAN F, WANG N G, et al.Current situation and challenge of model predictive control applied to wave energy[J]. Control engineering of China, 2022, 29(9): 1631-1637.
[8] WILSON D G, ROBINETT R D III, BACELLI G, et al. Extending complex conjugate control to nonlinear wave energy converters[J]. Journal of marine science and engineering, 2020, 8(2): 84.
[9] LAVIDAS G, BLOK K.Shifting wave energy perceptions: the case for wave energy converter (WEC) feasibility at milder resources[J]. Renewable energy, 2021, 170: 1143-1155.
[10] GUO B Y, RINGWOOD J V.Geometric optimisation of wave energy conversion devices: a survey[J]. Applied energy, 2021, 297: 117100.
[11] 于定勇, 曲铭, 谢雨嘉. 一种集成OWC气室的桩基防波堤方案设计与试验研究[J]. 太阳能学报, 2021, 42(10): 379-386.
YU D Y, QU M, XIE Y J.Design and experimental study of a pile-based breakwater integrated OWC air chamber[J]. Acta energiae solaris sinica, 2021, 42(10): 379-386.
[12] MAHMUD Z, SHIRAISHI K, ABIDO M Y, et al.Hierarchical approach to evaluating storage requirements for renewable-energy-driven grids[J]. iScience, 2022, 26(1): 105900.
[13] BOZZI S, BESIO G, PASSONI G.Wave power technologies for the Mediterranean offshore: scaling and performance analysis[J]. Coastal engineering, 2018, 136: 130-146.
[14] ARENA F, ROMOLO A, MALARA G, et al.On design and building of a U-OWC wave energy converter in the Mediterranean Sea: a case study[C]//ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 2013.
[15] 宋瑞银, 蔡炳清, 郑堤, 等. 波浪能转换装置中双浮子特性的数值研究[J]. 水力发电学报, 2015, 34(2): 130-135.
SONG R Y, CAI B Q, ZHENG D, et al.Numerical study on characteristics of dual buoy for wave energy conversion device[J]. Journal of hydroelectric engineering, 2015, 34(2): 130-135.
[16] ALKHAYYAT M, BRAHIMI T, LANGODAN S, et al.Wave energy converters: barriers and drivers[J]. 2020.
[17] 顾煜炯, 谢典, 耿直. 阵列浮子式波浪能发电装置的水动力性能分析[J]. 水力发电学报, 2016, 35(8): 114-120.
GU Y J, XIE D, GENG Z.Hydrodynamic analysis of wave power generation devices of array buoy type[J]. Journal of hydroelectric engineering, 2016, 35(8): 114-120.
[18] 张亚群, 盛松伟, 叶寅, 等. 双浮体波浪能浮标水动力学性能试验[J]. 太阳能学报, 2021, 42(6): 29-32.
ZHANG Y Q, SHENG S W, YE Y, et al.Hydrodynamic performance test of double-floating wave power buoy[J]. Acta energiae solaris sinica, 2021, 42(6): 29-32.
[19] SALTER S, JEFFREY D, TAYLOR J.The architecture of nodding duck wave power generators[J]. The naval architect, 1976: 21-24.
[20] FARROK O, ISLAM M R, MUTTAQI K M, et al.Design and optimization of a novel dual-port linear generator for oceanic wave energy conversion[J]. IEEE transactions on industrial electronics, 2020, 67(5): 3409-3418.
[21] WOLFBRANDT A.Automated design of a linear generator for wave energy converters-a simplified model[J]. IEEE transactions on magnetics, 2006, 42(7): 1812-1819.
[22] LEJERSKOG E, STRÖMSTEDT E, SAVIN A, et al. Study of the operation characteristics of a point absorbing direct driven permanent magnet linear generator deployed in the Baltic Sea[J]. IET renewable power generation, 2016, 10(8): 1204-1210.
[23] SHENG S W.Research on power take-off system of floating wave power device[J]. Journal of mechanical engineering, 2012, 48(24): 141.
[24] 陈佳, 兰飞, 郭昊霖, 等. 波浪能发电控制技术研究综述[J]. 电力自动化设备, 2023, 43(6): 124-136.
CHEN J, LAN F, GUO H L, et al.Review on wave energy power generation control technology[J]. Electric power automation equipment, 2023, 43(6): 124-136.
[25] KOFOED J P, FRIGAARD P, FRIIS-MADSEN E, et al.Prototype testing of the wave energy converter wave dragon[J]. Renewable energy, 2006, 31(2): 181-189.
[26] MAJIDI NEZHAD M, GROPPI D, ROSA F, et al.Nearshore wave energy converters comparison and Mediterranean small island grid integration[J]. Sustainable energy technologies and assessments, 2018, 30: 68-76.
[27] DREW B, PLUMMER A R, SAHINKAYA M.A review of wave energy converter technology[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2009, 223: 887-902.
[28] FALCÃO A D. The shoreline OWC wave power plant at the Azores[C]//Proceedings of 4th European Wave Energy Conference. Aalborg, Denmark, 2000: 42-47.
[29] MARTINELLI L, RUOL P, CORTELLAZZO G.On mooring design of wave energy converters: the seabreath application[J]. Coastal engineering proceedings, 2012(33): 3.
[30] BLAŽAUSKAS N, PAŠILIS A, KNOLIS A. Potential applications for small scale wave energy installations[J]. Renewable and sustainable energy reviews, 2015, 49: 297-305.
[31] 刘艳娇, 彭爱武, 黄铭冶. 海洋波浪能发电装置PTO系统研究进展[J]. 太阳能学报, 2023, 44(12): 381-392.
LIU Y J, PENG A W, HUANG M Y.Research progress of PTO system for wave energy converter[J]. Acta energiae solaris sinica, 2023, 44(12): 381-392.
[32] 盛松伟, 王坤林, 吝红军, 等. 100 kW鹰式波浪能发电装置“万山号” 实海况试验[J]. 太阳能学报, 2019, 40(3): 709-714.
SHENG S W, WANG K L, LIN H J, et al.Open sea tests of 100 kW wave energy convertor sharp eagle Wanshan[J]. Acta energiae solaris sinica, 2019, 40(3): 709-714.
[33] LIN Z C, HUANG X R, XIAO X.Approximate dynamic programming for control of wave energy converters with implementation and validation on a point absorber prototype[J]. IEEE transactions on industrial electronics, 2024, 71(5): 4753-4761.
[34] LIN Z C, HUANG X R, XIAO X.A novel model predictive control formulation for wave energy converters based on the reactive rollout method[J]. IEEE transactions on sustainable energy, 2022, 13(1): 491-500.
[35] GENEST R, RINGWOOD J V.A critical comparison of model-predictive and pseudospectral control for wave energy devices[J]. Journal of ocean engineering and marine energy, 2016, 2(4): 485-499.
[36] KHEDKAR K, NANGIA N, THIRUMALAISAMY R, et al.The inertial sea wave energy converter(ISWEC) technology: device-physics, multiphase modeling and simulations[J]. Ocean engineering, 2021, 229: 108879.
[37] NEVAREZ V, BACELLI G, COE R G, et al.Feedback resonating control for a wave energy converter[C]//2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Amalfi, Italy, 2018: 1286-1290.
[38] FALNES J.A review of wave-energy extraction[J]. Marine structures, 2007, 20(4): 185-201.
[39] FAEDO N, OLAYA S, RINGWOOD J V.Optimal control, MPC and MPC-like algorithms for wave energy systems: an overview[J]. IFAC journal of systems and control, 2017, 1: 37-56.
[40] GIESKE P.Model predictive control of a wave energy converter: archimedes wave swing[D]. Delft unirersity of Technotogy(Tu Delft), 2007.
[41] RICHTER M, MAGANA M E, SAWODNY O, et al.Nonlinear model predictive control of a point absorber wave energy converter[J]. IEEE transactions on sustainable energy, 2013, 4(1): 118-126.
[42] RICHTER M, MAGAÑA M E, SAWODNY O, et al. Power optimisation of a point absorber wave energy converter by means of linear model predictive control[J]. IET renewable power generation, 2014, 8(2): 203-215.
[43] MATTIAZZO G.State of the art and perspectives of wave energy in the Mediterranean Sea: backstage of ISWEC[J]. Frontiers in energy research, 2019, 7: 114.
[44] HENRIQUES J C C, GATO L M C, FALCÃO A F O, et al. Latching control of a floating oscillating-water-column wave energy converter[J]. Renewable energy, 2016, 90: 229-241.
[45] BABARIT A, DUCLOS G, CLÉMENT A H. Comparison of latching control strategies for a heaving wave energy device in random sea[J]. Applied ocean research, 2004, 26(5): 227-238.
[46] 刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58.
LIU H B, PENG A W, ZHAO L Z.Summary of power control methods for wave power generation system[J]. Advanced technology of electrical engineering and energy, 2020, 39(5): 49-58.
[47] ALAMIAN R, SHAFAGHAT R, MIRI S J, et al.Evaluation of technologies for harvesting wave energy in Caspian Sea[J]. Renewable and sustainable energy reviews, 2014, 32: 468-476.
[48] ISLAM M T, UDDIN M, UDDIN M M, et al.Sparsity-preserving two-sided iterative algorithm for Riccati-based boundary feedback stabilization of the incompressible navier-stokes flow[J]. Mathematical problems in engineering, 2022, 2022: 4435167.
[49] 杨绍辉, 何宏舟. 多点直驱式波浪能发电系统的恒转速控制研究[J]. 太阳能学报, 2014, 35(5): 887-893.
YANG S H, HE H Z.Constant speed control research of multipoint direct-drive wave power generation system[J]. Acta energiae solaris sinica, 2014, 35(5): 887-893.
[50] ZHAN S Y, WANG B, NA J, et al.Adaptive optimal control of wave energy converters[J]. IFAC-Papers OnLine, 2018, 51(29): 38-43.
[51] 林汇金, 杨俊华, 邱孟, 等. 基于Rife法的波浪发电RBF神经网络功率优化控制[J]. 太阳能学报, 2022, 43(10): 364-370.
LIN H J, YANG J H, QIU M, et al.Optimal power control of RBF neural network strategy for wave power generation system based on Rife algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 364-370.
[52] ANDERLINI E, FOREHAND D I M, BANNON E, et al. Reactive control of a wave energy converter using artificial neural networks[J]. International journal of marine energy, 2017, 19: 207-220.
[53] LI L, YUAN Z M, GAO Y.Maximization of energy absorption for a wave energy converter using the deep machine learning[J]. Energy, 2018, 165: 340-349.
PDF(1096 KB)

Accesses

Citation

Detail

Sections
Recommended

/