LAYOUT PLANNING OF EXPRESSWAY CHARGING STATIONS CONSIDERING INTERACTION BETWEEN CHARGING STATIONS

Jiang Changxu, Lu Yuejun, Lin Zheng, Yuan Yujuan, Zheng Wendi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 11-21.

PDF(1114 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1114 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 11-21. DOI: 10.19912/j.0254-0096.tynxb.2023-2042

LAYOUT PLANNING OF EXPRESSWAY CHARGING STATIONS CONSIDERING INTERACTION BETWEEN CHARGING STATIONS

  • Jiang Changxu1,2, Lu Yuejun1,2, Lin Zheng1,2, Yuan Yujuan1,2, Zheng Wendi1,2
Author information +
History +

Abstract

To accurately calculate the charging demand of electric vehicles (EVs), a dynamic charging demand model of EVs on highway is proposed, which considers the interaction between stations. On this basis, a charging station layout planning model is constructed to minimize the investment cost of charging facilities and the waiting time of users in the queue, with the number of charging stations and piles, the distance between stations, and the charging demand of users as constraints. To solve the model quickly, this paper establishes a set of candidate sites under the shortest path and then linearizes the distance constraint between charging stations from nonlinear to integer linear programming. Moreover, the non-dominated sorting multi-objective genetic algorithm Ⅱ (NSGA-Ⅱ) and evidence reasoning are adopted to solve the proposed models. Finally, the proposed model is simulated and verified in the actual travel data of the Fujian section of the 31-node Shenhai Expressway.

Key words

charging equipment / electric vehicles / highway planning / charging demand / new energy

Cite this article

Download Citations
Jiang Changxu, Lu Yuejun, Lin Zheng, Yuan Yujuan, Zheng Wendi. LAYOUT PLANNING OF EXPRESSWAY CHARGING STATIONS CONSIDERING INTERACTION BETWEEN CHARGING STATIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 11-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2042

References

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 陆燕娟, 潘庭龙, 杨朝辉. 计及电动汽车的社区微网储能容量配置[J]. 太阳能学报, 2021, 42(12): 362-367.
LU Y J, PAN T L, YANG C H.Energy storage capacity configuration in community microgrid considering electric vehicles[J]. Acta energiae solaris sinica, 2021, 42(12): 362-367.
[3] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报, 2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[4] 周衍涛, 戴军, 苑惠丽, 等. 城市电动汽车充电设施需求预测与规划布局研究[J]. 电力系统保护与控制, 2021, 49(24): 177-187.
ZHOU Y T, DAI J, YUAN H L, et al.Demand forecasting and planning layout of urban electric vehicle charging facilities[J]. Power system protection and control, 2021, 49(24): 177-187.
[5] 胡泽春, 邵成成, 何方, 等. 电网与交通网耦合的设施规划与运行优化研究综述及展望[J]. 电力系统自动化, 2022, 46(12): 3-19.
HU Z C, SHAO C C, HE F, et al.Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of electric power systems, 2022, 46(12): 3-19.
[6] 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132.
WANG H X, YUAN J H, CHEN Z, et al.Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 112-132.
[7] 陶顺, 肖湘宁, 温剑锋, 等. 电动汽车分散充电设施配比度分析与计算方法[J]. 电工技术学报, 2014, 29(8): 11-19.
TAO S, XIAO X N, WEN J F, et al.Configuration ratio for distributed electrical vehicle charging infrastructures[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 11-19.
[8] LIN H Y, FU K, WANG Y, et al.Characteristics of electric vehicle charging demand at multiple types of location: application of an agent-based trip chain model[J]. Energy, 2019, 188: 116122.
[9] YI Z, Liu X C, Wei R, et al.Electric vehicle charging demand forecasting using deep learning model[J]. Journal of intelligent transportation systems, 2021(1):1-14.
[10] LYU S, WEI Z N, SUN G Q, et al.Optimal power and semi-dynamic traffic flow in urban electrified transportation networks[J]. IEEE transactions on smart grid, 2020, 11(3): 1854-1865.
[11] 谢仕炜, 胡志坚, 王珏莹. 考虑时-空耦合的城市电力-交通网络动态流量均衡[J]. 中国电机工程学报, 2021, 41(24): 8408-8424.
XIE S W, HU Z J, WANG J Y.Dynamic flow equilibrium of urban power and transportation networks considering the coupling in time and space[J]. Proceedings of the CSEE, 2021, 41(24): 8408-8424.
[12] DAGANZO C F.The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation research part B: methodological, 1994, 28(4): 269-287.
[13] HAN K, FRIESZ T L, YAO T.A partial differential equation formulation of Vickrey’s bottleneck model, part Ⅱ: numerical analysis and computation[J]. Transportation research part B: methodological, 2013, 49: 75-93.
[14] YPERMAN I.The link transmission model for dynamic network loading[D]. Leuven: Catholic University of Leuven, 2007.
[15] 董厚琦, 王俐英, 曹雨微, 等. 考虑用户价格需求响应的光-储充电站容量配置与定价方法研究[J]. 太阳能学报, 2021, 42(6): 79-86.
DONG H Q, WANG L Y, CAO Y W, et al.Capacity configuration and pricing designing method of PV-storage charging station considering user demand response[J]. Acta energiae solaris sinica, 2021, 42(6): 79-86.
[16] 盛裕杰, 郭庆来, 刘梦洁, 等. 多源数据融合的用户充电行为分析与充电设施规划实践[J]. 电力系统自动化, 2022, 46(12): 151-162.
SHENG Y J, GUO Q L, LIU M J, et al.User charging behavior analysis and charging facility planning practice based on multi-source data fusion[J]. Automation of electric power systems, 2022, 46(12): 151-162.
[17] 卢志刚, 王文涛, 张丹, 等. 基于配电网可靠性的分布式电源与充换电站协同规划[J]. 太阳能学报, 2020, 41(4): 348-356.
LU Z G, WANG W T, ZHANG D, et al.DG and EVCS collaborative planning based on distribution network reliability[J]. Acta energiae solaris sinica, 2020, 41(4): 348-356.
[18] 张美霞, 徐立成, 杨秀, 等. 基于电动汽车充电需求时空分布特性的充电站规划研究[J]. 电网技术, 2023, 47(1): 256-265.
ZHANG M X, XU L C, YANG X, et al.Planning of charging stations based on spatial and temporal distribution characteristics of electric vehicle charging demand[J]. Power system technology, 2023, 47(1): 256-265.
[19] 葛少云, 冯亮, 刘洪, 等. 考虑电量分布及行驶里程的高速公路充电站规划[J]. 电力自动化设备, 2013, 33(7): 111-116.
GE S Y, FENG L, LIU H, et al.Planning of charging stations on highway considering power distribution and driving mileage[J]. Electric power automation equipment, 2013, 33(7): 111-116.
[20] 葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001.
GE S Y, ZHU L W, LIU H, et al.Optimal deployment of electric vehicle charging stations on the highway based on dynamic traffic simulation[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2991-3001.
[21] 程杉, 许林峰, 孙伟斌, 等. 基于电压稳定性的电动汽车充电站最优规划[J]. 电力科学与技术学报, 2020, 35(4): 3-12.
CHENG S, XU L F, SUN W B, et al.Optimal planning of charging stations for electric vehicles based on voltage stability of distribution system[J]. Journal of electric power science and technology, 2020, 35(4): 3-12.
[22] 艾欣, 李一铮, 王坤宇, 等. 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容[J]. 电力自动化设备, 2018, 38(9): 9-14.
AI X, LI Y Z, WANG K Y, et al.Locating and sizing of electric vehicle charging station based on chaotic simulated annealing particle swarm optimization algorithm[J]. Electric power automation equipment, 2018, 38(9): 9-14.
[23] 武渊, 叶宁. 城市路网中电动汽车充电站双层多目标选址定容模型[J]. 山西大学学报(自然科学版), 2021, 44(4): 695-704.
WU Y, YE N.Double-layer multi-objective location and capacity model for electric vehicle charging stations in urban road networks[J]. Journal of Shanxi University (natural science edition), 2021, 44(4): 695-704.
[24] 周灿煌, 郑杰辉, 荆朝霞, 等. 面向园区微网的综合能源系统多目标优化设计[J]. 电网技术, 2018, 42(6): 1687-1697.
ZHOU C H, ZHENG J H, JING Z X, et al.Multi-objective optimal design of integrated energy system for park-level microgrid[J]. Power system technology, 2018, 42(6): 1687-1697.
[25] 尉峰. 基于多目标优化和动态博弈方法的综合能源系统规划及运行优化研究[D]. 广州: 华南理工大学, 2017.
YU F.Multi-objective optimization and dynamic game approach for optimal planning and operation of integrated energy systems[D]. Guangzhou: South China University of Technology, 2017.
[26] 刘慧甜, 胡大伟. 不同禁售时间下燃油车替代策略的减排效果分析[J]. 交通运输研究, 2022, 8(6): 40-52.
LIU H T, HU D W.Emission reduction effects of alternative strategies for fuel vehicle under different time banning the sale[J]. Transport research, 2022, 8(6): 40-52.
PDF(1114 KB)

Accesses

Citation

Detail

Sections
Recommended

/