ABNORMAL DATA CLEANING METHOD OF WIND SPEED-POWER CURVE BASED ON RANSAC-DBSCAN

Luo Langchuan, Li Ruhui, Zeng Dong, Zou Mingheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 445-453.

PDF(2885 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2885 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 445-453. DOI: 10.19912/j.0254-0096.tynxb.2023-2072

ABNORMAL DATA CLEANING METHOD OF WIND SPEED-POWER CURVE BASED ON RANSAC-DBSCAN

  • Luo Langchuan1, Li Ruhui1, Zeng Dong1, Zou Mingheng2
Author information +
History +

Abstract

Addressing the challenge of offshore wind turbines inevitably producing a significant volume of abnormal data—such as noise, faults, wind abandonment, and power limitation, which compromises the availability of operational data—this paper analyzes the distribution characteristics of anomalous data within wind power curves. We propose a novel method for cleaning this data, utilizing a fusion algorithm that combines Random Sample Consensus (RANSAC) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This approach is rigorously evaluated for its cleaning effectiveness, efficiency, and the justification of data exclusion. Our findings reveal that the proposed methodology can swiftly, effortlessly, and logically delineate the boundaries of anomalous data, demonstrating its significant potential for engineering applications.

Key words

offshore wind farms / data analytics / anomaly detection / RANSAC / DBSCAN

Cite this article

Download Citations
Luo Langchuan, Li Ruhui, Zeng Dong, Zou Mingheng. ABNORMAL DATA CLEANING METHOD OF WIND SPEED-POWER CURVE BASED ON RANSAC-DBSCAN[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 445-453 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2072

References

[1] 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.
REN D W, XIAO J Y, HOU J M, et al.Construction and evolution of China’s new power system under dual carbon goal[J]. Power system technology, 2022, 46(10): 3831-3839.
[2] Global Wind Energy Council. Global wind report2024[EB/OL]. (2024-04-16)[2024-12-10]. https://gwec.net/globalwindreport2024/.
[3] 姚伟, 熊永新, 姚雅涵, 等. 海上风电柔直并网系统调频控制综述[J]. 高电压技术, 2021, 47(10): 3397-3413.
YAO W, XIONG Y X, YAO Y H, et al.Review of voltage source converter-based high voltage direct current integrated offshore wind farm on providing frequency support control[J]. High voltage engineering, 2021, 47(10): 3397-3413.
[4] DAI J C, YANG X, HU W, et al.Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684-696.
[5] 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42(12): 4278-4292.
GE C, YAN J, LIU Y Q, et al.Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42(12): 4278-4292.
[6] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[7] 刘吉成, 朱玺瑞, 于晶. 基于IWOA-SA-Elman神经网络的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 143-150.
LIU J C, ZHU X R, YU J.Short-term wind power prediction based on IWOA-SA-Elman neural network[J]. Acta energiae solaris sinica, 2024, 45(1): 143-150.
[8] 黄玲玲, 李锁, 符杨, 等. 基于风电机组状态的超短期海上风电功率预测[J]. 太阳能学报, 2022, 43(8): 391-398.
HUANG L L, LI S, FU Y, et al.Ultra-short term offshore wind power prediction based on condition-assessment of wind turbines[J]. Acta energiae solaris sinica, 2022, 43(8): 391-398.
[9] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121.
LOU J L, XU J, LU H, et al.Wind turbine data-cleaning algorithm based on power curve[J]. Automation of electric power systems, 2016, 40(10): 116-121.
[10] 朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015, 43(3): 38-45.
ZHU Q W, YE L, ZHAO Y N, et al.Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power system protection and control, 2015, 43(3): 38-45.
[11] ZHAO Y N, YE L, WANG W S, et al.Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE transactions on sustainable energy, 2018, 9(1): 95-105.
[12] SHEN X J, FU X J, ZHOU C C.A combined algorithm for cleaning abnormal data of wind turbine power curve based on change point grouping algorithm and quartile algorithm[J]. IEEE transactions on sustainable energy, 2019, 10(1): 46-54.
[13] WANG Y, INFIELD D G, STEPHEN B, et al.Copula-based model for wind turbine power curve outlier rejection[J]. Wind energy, 2014, 17(11): 1677-1688.
[14] 郭慧军, 李永亭, 齐咏生, 等. 两阶段CP-Copula的风电机组异常数据清洗算法[J]. 计算机仿真, 2022, 39(11): 85-91.
GUO H J, LI Y T, QI Y S, et al.A two-stage CP-copula algorithm for clearing abnormal data of wind turbine[J]. Computer simulation, 2022, 39(11): 85-91.
[15] CIULLA G, D’AMICO A, DI DIO V, et al. Modelling and analysis of real-world wind turbine power curves: assessing deviations from nominal curve by neural networks[J]. Renewable energy, 2019, 140: 477-492.
[16] 韩文卓, 王方雨, 戈志华. 基于广义最小二乘的风力机风速-功率曲线拟合方法研究[J]. 电工电能新技术, 2018, 37(9): 67-73.
HAN W Z, WANG F Y, GE Z H.Research on wind speed-power curve fitting model of wind turbine based on generalized least squares method[J]. Advanced technology of electrical engineering and energy, 2018, 37(9): 67-73.
[17] YESILBUDAK M.Implementation of novel hybrid approaches for power curve modeling of wind turbines[J]. Energy conversion and management, 2018, 171: 156-169.
[18] LI Z X, JIANG Y, GUO Q, et al.Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations[J]. Renewable energy, 2018, 116: 55-73.
[19] 封焯文, 朱世平, 赵志华, 等. 风功率异常数据检测方法对比研究[J]. 电工电能新技术, 2021, 40(7): 55-61.
FENG Z W, ZHU S P, ZHAO Z H, et al.Comparative study on detection methods of wind power abnormal data[J]. Advanced technology of electrical engineering and energy, 2021, 40(7): 55-61.
[20] 田书欣, 程浩忠, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7): 18-26.
TIAN S X, CHENG H Z, ZENG P L, et al.Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 18-26.
[21] 杨立滨, 曹阳, 魏韡, 等. 计及风电不确定性和弃风率约束的风电场储能容量配置方法[J]. 电力系统自动化, 2020, 44(16): 45-52.
YANG L B, CAO Y, WEI W, et al.Configuration method of energy storage for wind farms considering wind power uncertainty and wind curtailment constraint[J]. Automation of electric power systems, 2020, 44(16): 45-52.
[22] 马良玉, 袁乃正. 基于CFSFDP与LightGBM的风电机组异常状态预警研究[J]. 太阳能学报, 2023, 44(5): 401-406.
MA L Y, YUAN N Z.Research on abnormal condition early warning for wind turbine based on CFSFDP and LightGBM[J]. Acta energiae solaris sinica, 2023, 44(5): 401-406.
[23] WANG H, ZHANG N, DU E S, et al.An adaptive identification method of abnormal data in wind and solar power stations[J]. Renewable energy, 2023, 208: 76-93.
[24] FISCHLER M A, BOLLES R C.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[25] 肖勇, 郑楷洪, 余忠忠, 等. 基于三次指数平滑模型与DBSCAN聚类的电量数据异常检测[J]. 电网技术, 2020, 44(3): 1099-1104.
XIAO Y, ZHENG K H, YU Z Z, et al.Power data anomaly detection based on holt-winters model and DBSCAN clustering[J]. Power system technology, 2020, 44(3): 1099-1104.
[26] ESTER M, KRIEGEL H, SANDER J, et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//The Second International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA, 1996.
[27] GB/T 18451.2—2021, 风力发电机组功率特性测试[S].
GB/T 18451.2—2021, Wind power—power performance measurements of electricity producing[S].
PDF(2885 KB)

Accesses

Citation

Detail

Sections
Recommended

/