DEVELOPMENT TREND AND PROSPECT OF GREEN HYDROGEN PRODUCTION FROM RENEWABLE ENERGY POWER GENERATION

Zhao Tengfei, Liu Qing, Chen Yingjie, Wang Yan, Wu Xu, Kang Ling

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 39-48.

PDF(1297 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1297 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 39-48. DOI: 10.19912/j.0254-0096.tynxb.2023-2073

DEVELOPMENT TREND AND PROSPECT OF GREEN HYDROGEN PRODUCTION FROM RENEWABLE ENERGY POWER GENERATION

  • Zhao Tengfei, Liu Qing, Chen Yingjie, Wang Yan, Wu Xu, Kang Ling
Author information +
History +

Abstract

In order to solve the uneven regional distribution of power resources and power demand, and the limited absorption caused by the continuous installation of renewable energy, this paper analyzes the power structure and development trend of our country and the current wind power generation and abandonment situation, and discusses the necessity of using renewable energy to produce green hydrogen. Through the application analysis of the current three mainstream technology routes and actual cases of green hydrogen production from water electrolysis (alkaline electrolysis, proton exchange membrane electrolysis and solid oxide electrolysis), the feasibility of different types of wind and solar power generation coupling modes of hydrogen production was discussed, and the application prospects and development direction of green hydrogen production from renewable energy in the future were analyzed.

Key words

green hydrogen / stored energy / electrolysis of water / wind power generation / renewable energy

Cite this article

Download Citations
Zhao Tengfei, Liu Qing, Chen Yingjie, Wang Yan, Wu Xu, Kang Ling. DEVELOPMENT TREND AND PROSPECT OF GREEN HYDROGEN PRODUCTION FROM RENEWABLE ENERGY POWER GENERATION[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 39-48 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2073

References

[1] 中电联. 《中国电力行业年度发展报告2024》[R]. 北京:中国电力企业联合会, 2024.
China Electricity Council.Annual development report of China’s power industry 2024[R]. Beijing: China Electricity Council, 2024.
[2] 郭宇. 中国能源、中国电力发展报告(2023)发布[N]. 中国工业报, 2023-09-22(007).
GUO Y. China Energy, China power development report (2023) release[N]. China industry news, 2023-09-22(007).
[3] 张涛, 刘树森, 王闯, 等. 区域多能源电网可再生能源发电容量规划及投资收益优化模型[J]. 可再生能源, 2020, 38(5): 705-710.
ZHANG T, LIU S S, WANG C, et al.Optimal capacity planning and return on investment of renewable energy generation for regional multi-energy electric power system[J]. Renewable energy resources, 2020, 38(5): 705-710.
[4] 庄冠群, 张懿夫, 张海锋, 等. 综合能源系统研究综述[J]. 吉林电力, 2022, 50(5): 13-19.
ZHUANG G Q, ZHANG Y F, ZHANG H F, et al.Summary of research on integrated energy system[J]. Jilin electric power, 2022, 50(5): 13-19.
[5] 罗远翔, 王宇航, 刘铖, 等. 风-光-火-蓄联合系统两阶段优化调度[J]. 太阳能学报, 2023, 44(1): 500-508.
LUO Y X, WANG Y H, LIU C, et al.Two-stage optimal dispatching of wind power-photovoltaic-thermal power-pumped storage combined system[J]. Acta energiae solaris sinica, 2023, 44(1): 500-508.
[6] 李建林, 李光辉, 郭丽军, 等. “十四五” 规划下氢能应用技术现状综述及前景展望[J]. 电气应用, 2021, 40(6): 10-16.
LI J L, LI G H, GUO L J, et al.Overview and prospect of hydrogen energy application technology under the 14th five year plan[J]. Electrotechnical application, 2021, 40(6): 10-16.
[7] 中关村储能产业技术联盟. 储能行业2022年发展情况及2023—2027年发展预测: 《储能产业研究白皮书2023》(摘选)[J]. 电气时代, 2023(5): 31-34.
Zhongguancun Energy Storage Industry Technology Alliance. Development status of energy storage industry in2022 and forecast for 2023—2027: “white paper on energy storage industry research 2023”(excerpt)[J]. Electrical era, 2023(5): 31-34.
[8] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳” 目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179.
MENG X Y, CHEN M Y, GU A L, et al.China’s hydrogen development strategy in the context of double carbon targets[J]. Natural gas industry, 2022, 42(4): 156-179.
[9] 陈倩, 王维庆, 王海云, 等. 含分布式电源的配电网动态无功补偿优化策略研究[J]. 太阳能学报, 2023, 44(1): 525-535.
CHEN Q, WANG W Q, WANG H Y, et al.Research on dynamic reactive power compensation optimization strategy ofdistribution network with distributed generation[J]. Acta energiae solaris sinica, 2023, 44(1): 525-535.
[10] 侯朋飞, 康鹏, 白建明. 碱性水电解隔膜材料最新进展[J]. 现代化工, 2023, 43(3): 62-66.
HOU P F, KANG P, BAI J M.Advances in diaphragm materials for alkaline water electrolysis[J]. Modern chemical industry, 2023, 43(3): 62-66.
[11] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896.
LIU W, WAN Y M, XIONG Y L, et al.Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896.
[12] WANG T Z, CAO X J, JIAO L F.Progress in hydrogen production coupled with electrochemical oxidation of small molecules[J]. Angewandte chemie (international Edtion), 2022, 61(51): e202213328.
[13] QIAN Q Z, ZHU Y, AHMAD N, et al.Recent advancements in electrochemical hydrogen production via hybrid water splitting[J]. Advanced materials, 2024, 36(4): e2306108.
[14] REN J T, CHEN L, WANG H Y, et al.Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices[J]. Energy & environmental science, 2024, 17(1): 49-113.
[15] HE W, ABBAS Q, ALHARTHI M, et al.Integration of renewable hydrogen in light-duty vehicle: nexus between energy security and low carbon emission resources[J]. International journal of hydrogen energy, 2020, 45(51): 27958-27968.
[16] 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443.
WU H W, WANG J, GONG Y L, et al.Development status and application prospect analysis of energy storage technology[J]. Journal of electric power, 2021, 36(5): 434-443.
[17] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[18] 国家发展改革委, 国家能源局. 关于加快建设全国统一电力市场体系的指导意见[J]. 大众用电, 2022, 37(2): 8-10.
National Development and Reform Commission, National Energy Administration. Guiding opinions on accelerating the construction of a unified national electricity market system[J]. Popular Electricity, 2022, 37(2): 8-10.
[19] 刘笑乐, 李琼. 中国能源安全条件下的清洁能源供需平衡统计分析[J]. 能源与节能, 2024(8): 1-5, 210.
Liu X L, Li Q.Statistical analysis of clean energy supply and demand balance under condition energy security in China[J]. Energy and energy conservation, 2024(8): 1-5, 210.
[20] 单葆国, 孙祥栋, 李江涛, 等. 经济新常态下中国电力需求增长研判[J]. 中国电力, 2017, 50(1): 19-24.
SHAN B G, SUN X D, LI J T, et al.Analysis on the China’s electricity demand growth under the new economic norm[J]. Electric power, 2017, 50(1): 19-24.
[21] 杨敏, 王宝, 叶彬, 等. 新常态下经济电力关系分析与用电需求预测[J]. 智慧电力, 2018, 46(4): 50-56.
YANG M, WANG B, YE B, et al.Study on relationship between economy and electricity & electricity demand forecasting under new normal[J]. Smart power, 2018, 46(4): 50-56.
[22] 罗仕华, 胡维昊, 刘雯, 等. 中国2060碳中和能源系统转型路径研究[J]. 中国科学: 技术科学, 2024, 54(1): 43-64.
LUO S H, HU W H, LIU W, et al.Transition pathway for China to achieve carbon neutrality by 2060[J]. Scientia sinica (technologica), 2024, 54(1): 43-64.
[23] 王其良, 周恩泽, 屠丽娟, 等. 基于太阳能补热的多源互补供暖系统优化研究[J]. 太阳能学报, 2021, 42(11): 178-185.
WANG Q L, ZHOU E Z, TU L J, et al.Optimization of multi-source complementary heating system based on solar auxiliary heating[J]. Acta energiae solaris sinica, 2021, 42(11): 178-185.
[24] 郝宇, 郑少卿, 彭辉. “供给侧改革” 背景下中国能源经济形势展望[J]. 北京理工大学学报(社会科学版), 2017, 19(2): 28-34.
HAO Y, ZHENG S Q, PENG H.The perspective of China’s energy economy under the background of the supply-side reform[J]. Journal of Beijing Institute of Technology (social sciences edition), 2017, 19(2): 28-34.
[25] 张伟, 李明, 陈晓, 等. 经济转型期电力消费特征分析与需求预测[J]. 电力系统自动化, 2019, 43(8): 1-9.
ZHANG W, LI M, CHEN X, et al.Characteristics analysis of electricity consumption and demand forecasting during economic transition period[J]. Automation of electric power systems, 2019, 43(8): 1-9.
[26] 林卫斌, 吴嘉仪. 碳中和目标下中国能源转型框架路线图探讨[J]. 价格理论与实践, 2021(6): 9-12.
LIN W B, WU J Y.Discussion on the roadmap of China’s energy transition framework under the goal of carbon neutrality[J]. Price: theory & practice, 2021(6): 9-12.
[27] GAO X, RAI V.Local demand-pull policy and energy innovation: evidence from the solar photovoltaic market in China[J]. Energy policy, 2019, 128: 364-376.
[28] 翁楚彬, 周雄冬, 徐梦珍. 西藏可再生能源开发适宜度评价[J]. 太阳能学报, 2023, 44(1): 475-484.
WENG C B, ZHOU X D, XU M Z.Research on suitability of renewable energy exploitation in Tibet[J]. Acta energiae solaris sinica, 2023, 44(1): 475-484.
[29] 杨水丽, 来小康, 丁涛, 等. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2): 515-528.
YANG S L, LAI X K, DING T, et al.Application and prospect of new energy storage technologies in resilient power systems[J]. Energy storage science and technology, 2023, 12(2): 515-528.
[30] HUNG D Q, SHAH M R, MITHULANANTHAN N.Technical challenges, security and risk in grid integration of renewable energy. smart power systems and renewable energy[J]. System integration, 2016, 57: 99-118.
[31] CHENG G S, YANG Y H, XIU T C, et al.Analysis of hydrogen production potential from water electrolysis in China[J]. Energy & fuels, 2023, 37(13): 9220-9232.
[32] 雷宇, 袁熹, 王颖, 等. 基于太阳能的甲烷重整制氢技术研究进展[J]. 太阳能学报, 2022, 43(12): 154-160.
LEI Y, YUAN X, WANG Y, et al.Research progress of hydrogen production from methane reforming based on solar energy[J]. Acta energiae solaris sinica, 2022, 43(12): 154-160.
[33] 李珍妮. 新能源与主流电解水耦合制氢工艺技术研究[J]. 当代化工, 2023, 52(6): 1396-1400.
LI Z N.Research on hydrogen production technology by coupling new energy and mainstream water electrolysis[J]. Contemporary chemical industry, 2023, 52(6): 1396-1400.
[34] NAGASAWA K, ISHIDA T, KASHIWAGI H, et al.Design and characterization of compact proton exchange membrane water electrolyzer for component evaluation test[J]. International journal of hydrogen energy, 2021, 46(74): 36619-36628.
[35] 李珂, 张横, 郑晓宇, 等. 预磁极化条件下PEM水电解制氢特性与效率研究[J]. 太阳能学报, 2022, 43(6): 321-326.
LI K, ZHANG H, ZHENG X Y, et al.Study on characteristics and efficiency of hydrogen production by PEM water electrolysis under pre-magnetic polarization[J]. Acta energiae solaris sinica, 2022, 43(6): 321-326.
[36] JANG D, KIM J, KIM D, et al.Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies[J]. Energy conversion and management, 2022, 258: 115499.
[37] FALCÃO D S. Green hydrogen production by anion exchange membrane water electrolysis: status and future perspectives[J]. Energies, 2023, 16(2): 943.
[38] DAVID M, OCAMPO-MARTÍNEZ C, SÁNCHEZ-PEÑA R. Advances in alkaline water electrolyzers: a review[J]. Journal of energy storage, 2019, 23: 392-403.
[39] ABBASI R, SETZLER B P, LIN S S, et al.A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers[J]. Advanced materials, 2019, 31(31): 1805876-1805889.
[40] 张琪. 基于可再生能源水电解制氢技术发展概述[J]. 当代化工研究, 2023(2): 14-16.
ZHANG Q.Overview of the development of hydrogen production technology by water electrolysis based on renewable energy[J]. Modern chemical research, 2023(2): 14-16.
[41] 周克林, 陈意馨. 基于灵活性供需关系的区域电网调度策略研究[J]. 光源与照明, 2022(12): 162-167.
ZHOU K L, CHEN Y X.Research on regional power grid scheduling strategy based on flexible supply-demand relationship[J]. Light Source and Illumination,, 2022(12): 162-167.
[42] WANG F, WANG L, OU Y L, et al.Thermodynamic analysis of solid oxide electrolyzer integration with engine waste heat recovery for hydrogen production[J]. Case studies in thermal engineering, 2021, 27: 101240.
[43] 王俊如, 刘太楷, 宋嘉薇, 等. 碱式电解水非贵金属阴极材料研究进展[J]. 太阳能学报, 2023, 44(10): 572-579.
WANG J R, LIU T K, SONG J W, et al.Research progress of non-noble metal cathode materials for alkaline water electrolysis[J]. Acta energiae solaris sinica, 2023, 44(10): 572-579.
[44] LUCAS T R, FERREIRA A F, SANTOS PEREIRA R B, et al. Hydrogen production from the WindFloat Atlantic offshore wind farm: a techno-economic analysis[J]. Applied energy, 2022, 310: 118481.
[45] 弭辙, 胡健祖, 郭珍妮, 等. 新型电力系统体系下新能源发展态势及市场化消纳研究[J]. 山东电力技术, 2023, 50(10): 1-8.
MI Z, HU J Z, GUO Z N, et al.Research on the development situation and market-oriented consumption of renewable energy under new power system architecture[J]. Shandong electric power, 2023, 50(10): 1-8.
[46] 张垚, 赵振宇. 中国非水可再生能源电力生产与消纳时空演变及驱动机制分析[J]. 可再生能源, 2022, 40(9): 1263-1272.
ZHANG Y, ZHAO Z Y.Analysis on spatial-temporal evolution and driving mechanism of non-water renewable energy power generation and consumption in China[J]. Renewable energy resources, 2022, 40(9): 1263-1272.
[47] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[48] ZHAO G L, NIELSEN E R, TRONCOSO E, et al.Life cycle cost analysis: a case study of hydrogen energy application on the Orkney Islands[J]. International journal of hydrogen energy, 2019, 44(19): 9517-9528.
[49] 马思瑶. 绿电制氢项目经济型探索和绿氢产业路径研究[J]. 当代石油石化, 2024, 32(9): 42-46.
MA S Y.Economic exploration of green hydrogen production projects and research on the path of green hydrogen industry[J]. Contemporary petroleum and petrochemical, 2024, 32(9): 42-46.
[50] 蔡永翔, 杨安黔, 付宇, 等. 面向分布式光伏并网和电能替代的低压配电网自适应控制[J]. 可再生能源, 2023, 41(10): 1343-1351.
CAI Y X, YANG A Q, FU Y, et al.An adaptive control facing to distributed PV integration and electricity substitution in LV distribution networks[J]. Renewable energy resources, 2023, 41(10): 1343-1351.
[51] 李航. 光伏电解水制氢-燃料电池联用系统的控制策略研究[J]. 电工技术, 2023(18): 49-53.
LI H.Research on control strategy for integrated photovoltaic water electrolysis-hydrogen fuel cell system[J]. Electric engineering, 2023(18): 49-53.
[52] 王佳蕊, 李德鑫, 冷峻, 等. 电-气-氢-热-风-光耦合综合能源系统分层级Energy Hub建模方法[J]. 可再生能源, 2023, 41(8): 1080-1088.
WANG J R, LI D X, LENG J, et al.Hierarchical Energy Hub modeling method for electricity/gas/hydrogen/heat/wind/solar energy coupled integrated energy systems[J]. Renewable energy resources, 2023, 41(8): 1080-1088.
[53] 李建林, 方知进, 谭宇良, 等. 电化学储能系统在整县制屋顶光伏中应用前景分析[J]. 太阳能学报, 2022, 43(4): 1-12.
LI J L, FANG Z J, TAN Y L, et al.Application prospect analysis of electrochemical energy storage technology in county-wide rooftop photovoltaic system[J]. Acta energiae solaris sinica, 2022, 43(4): 1-12.
[54] 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376.
NIU M, HONG Z P, LI B, et al.Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta energiae solaris sinica, 2023, 44(9): 366-376.
[55] 张唯怡, 张议洁, 王进伟, 等. 电解水制氢技术及大电流析氧反应研究与展望[J]. 工程科学学报, 2023, 45(7): 1057-1070.
ZHANG W Y, ZHANG Y J, WANG J W, et al.Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction[J]. Chinese journal of engineering, 2023, 45(7): 1057-1070.
[56] ACUÑA L G, PADILLA R V, MERCADO A S. Measuring reliability of hybrid photovoltaic-wind energy systems: a new indicator[J]. Renewable energy, 2017, 106: 68-77.
[57] AL-GHUSSAIN L, AHMED H, HANEEF F.Optimization of hybrid PV-wind system: case study Al-Tafilah cement factory, Jordan[J]. Sustainable energy technologies and assessments, 2018, 30: 24-36.
[58] MACEDO S F, PEYERL D.Prospects and economic feasibility analysis of wind and solar photovoltaic hybrid systems for hydrogen production and storage: a case study of the Brazilian electric power sector[J]. International journal of hydrogen energy, 2022, 47(19): 10460-10473.
[59] CHEN Z J, WEI W, SONG L, et al.Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production[J]. Sustainable horizons, 2022, 1:100002.
PDF(1297 KB)

Accesses

Citation

Detail

Sections
Recommended

/