OPTIMIZATION STUDY OF ENERGY ACQUISITION OF HORIZONTAL PENDULUM WAVE ENERGY CONVERTER BASED ON PRESCRIBED EXCITATION MODEL

Wang Jiazhi, Shi Hongda, Cao Feifei, Jiang Xiaoqiang, Xu Yingzhou

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 677-684.

PDF(2062 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2062 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 677-684. DOI: 10.19912/j.0254-0096.tynxb.2023-2084

OPTIMIZATION STUDY OF ENERGY ACQUISITION OF HORIZONTAL PENDULUM WAVE ENERGY CONVERTER BASED ON PRESCRIBED EXCITATION MODEL

  • Wang Jiazhi1, Shi Hongda1-3, Cao Feifei1-3, Jiang Xiaoqiang1, Xu Yingzhou1
Author information +
History +

Abstract

A horizontal parametric pendulum wave energy converter is used as a research object to study the motion and energy acquisition law of the device under multiple degrees of freedom through model test, numerical simulation and prescribed excitation model. The average power of the device in the moored state with multiple degrees of freedom motion appears two peaks. The first peak is related to the nature of the outer float itself and the second peak is affected by the mooring. In this paper, taking the PTO damping form, the shape of the outer floater, and the mooring system as the research variables, and the study shows that the linear damping performance is better than the constant value damping in the sea area of Zhaitang Island. when the outer flouting body is hemispherical or hemispherical, the device obtains better performance. The influence of mooring axial stiffness and linear density on the second peak of energy acquisition is significant.

Key words

wave energy conversion / energy absorption / mooring / buoy / pendulum / prescribed excitation model

Cite this article

Download Citations
Wang Jiazhi, Shi Hongda, Cao Feifei, Jiang Xiaoqiang, Xu Yingzhou. OPTIMIZATION STUDY OF ENERGY ACQUISITION OF HORIZONTAL PENDULUM WAVE ENERGY CONVERTER BASED ON PRESCRIBED EXCITATION MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 677-684 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2084

References

[1] 周逸伦, 张亚群, 盛松伟, 等. 振荡水柱式波浪能供电浮标水动力学性能研究[J]. 太阳能学报, 2023, 44(3): 298-303.
ZHOU Y L, ZHANG Y Q, SHENG S W, et al.Study on hydrodynamic performance of oscillating water column wave energy-powered buoy[J]. Acta energiae solaris sinica, 2023, 44(3): 298-303.
[2] BABARIT A, CLE’MENT A H, GILLOTEAUX J C. Optimization and time-domain simulation of the SEAREV wave energy converter[C]//ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece, 2008: 703-712.
[3] CORDONNIER J, GORINTIN F, DE CAGNY A, et al.SEAREV: case study of the development of a wave energy converter[J]. Renewable energy, 2015, 80: 40-52.
[4] NICOLA P, GIOVANNI B, BIAGIO P, et al.Wave tank testing of a pendulum wave energy converter 1: 12 scale model[J]. International journal of applied mechanics, 2017, 9(2): 1750024.
[5] SIRIGU S A, FOGLIETTA L, GIORGI G, et al.Techno-economic optimisation for a wave energy converter via genetic algorithm[J]. Journal of marine science and engineering, 2020, 8(7): 482.
[6] CAI Q L, ZHU S Y.Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters[J]. Applied energy, 2021, 298: 117228.
[7] 王彤彤, 肖龙飞, 杨立军. 浸没式参数激励摆波能转换装置能量俘获特性研究[J]. 振动与冲击, 2020, 39(3): 199-204.
WANG T T, XIAO L F, YANG L J.Energy capture feature of wave energy converter with submerged parametric excitation pendulum[J]. Journal of vibration and shock, 2020, 39(3): 199-204.
[8] WU J M, QIAN C, ZHENG S M, et al.Investigation on the wave energy converter that reacts against an internal inverted pendulum[J]. Energy, 2022, 247: 123493.
[9] GRAVES J, KUANG Y, ZHU M L.Counterweight-pendulum energy harvester with reduced resonance frequency for unmanned surface vehicles[J]. Sensors and actuators A: physical, 2021, 321: 112577.
[10] 李绍勋, 陈卫星. 船用双摆翼式波浪能捕获装置设计与试验[J]. 机械设计与研究, 2022, 38(5): 29-34, 41.
LI S X, CHEN W X.Design and experiment of double-pendulum wave energy converter for unmanned surface vessels[J]. Machine design & research, 2022, 38(5): 29-34, 41.
[11] WELLO. Doing what no one else has, full scale wave energy generation[EB/OL]. https://wello.eu/2021/09/08/doing-what-no-one-else-has-full-scale-wave-energy-generation/.
[12] BOREN B C, LOMONACO P, BATTEN B A, et al.Design, development, and testing of a scaled vertical axis pendulum wave energy converter[J]. IEEE transactions on sustainable energy, 2017, 8(1): 155-163.
[13] 史宏达, 李向南, 赵晨羽, 等. 偏心摆式波能发电装置的设计与水动力性能研究[J]. 太阳能学报, 2020, 41(4): 296-301.
SHI H D, LI X N, ZHAO C Y, et al.Hydrodynamic study on eccentric pendulum wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(4): 296-301.
[14] JIANG X Q, SHI H D, CAO F F, et al.System analysis and experimental investigation of a pendulum-based wave energy converter[J]. Ocean engineering, 2023, 277: 114300.
[15] SO R, SIMMONS A, BREKKEN T, et al.Development of PTO-sim: a power performance module for the open-source wave energy converter code WEC-sim[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, Newfoundland, Canada, 2015.
[16] HALL M, GOUPEE A.Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data[J]. Ocean engineering, 2015, 104: 590-603.
[17] LIU Z, QU N, SHI H D.Experimental study on hydrodynamic performance of a wave energy converter within multi-heaving-buoys[J]. International journal of energy research, 2017, 41(9): 1351-1366.
PDF(2062 KB)

Accesses

Citation

Detail

Sections
Recommended

/