ANALYSIS OF HYDRODYNAMIC CHARACTERISTICS OFOFFSHORE WIND TURBINE SINGLE-PILE FOUNDATION UNDER WAVE-CURRENT COUPLING

Huang Fei, Zhu Renqing, Liu Hongzang, Qin Ya, Sun Ke, Ji Renwei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 485-493.

PDF(2666 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2666 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 485-493. DOI: 10.19912/j.0254-0096.tynxb.2023-2096

ANALYSIS OF HYDRODYNAMIC CHARACTERISTICS OFOFFSHORE WIND TURBINE SINGLE-PILE FOUNDATION UNDER WAVE-CURRENT COUPLING

  • Huang Fei1, Zhu Renqing1, Liu Hongzang1, Qin Ya2, Sun Ke3, Ji Renwei1
Author information +
History +

Abstract

Addressing the nonlinear hydrodynamics challenge where traditional potential flow theory fails to account for wave-current coupling and its interaction with structures, a numerical model for wave-current coupling was developed specifically for a single-pile foundation (SPF). The high-precision Detached-Eddy Simulation (DES) method was employed to simulate the flow field, facilitating a more accurate analysis of the hydrodynamic characteristics of the SPF under varying wave and current parameters. The results show that: 1) The maximum horizontal wave force increases linearly with the increase of wave steepness under no current velocity, while the non-dimensional wave force decreases with the increase of wave steepness. 2) When the wave and current are in the same direction, the valley value of the wave force increases more significantly than the peak value with the increase of the velocity. However, the phase difference at the peak value is more obvious than that at the valley value. When the wave and current is reversed, the peak decreasing trend and phase difference of the wave force are more distinct, and the peak pressure changes little with the velocity. 3) The wave force decreases with the growth of the wave period, and compared to the same wave height growth rate, the impact of period changes on wave force is more prominent. 4) In the process of flow around the SPF, there will be breaking phenomenon of waves and symmetrical vortices on both sides of the SPF. The flow around the pile also leads to the accumulation of high water level in front of the pile, resulting in a slightly jagged wave force curve.

Key words

single-pile foundation of wind turbine / detached-eddy simulation / wave-current coupling / phase difference / hydrodynamic characteristics / wave force

Cite this article

Download Citations
Huang Fei, Zhu Renqing, Liu Hongzang, Qin Ya, Sun Ke, Ji Renwei. ANALYSIS OF HYDRODYNAMIC CHARACTERISTICS OFOFFSHORE WIND TURBINE SINGLE-PILE FOUNDATION UNDER WAVE-CURRENT COUPLING[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 485-493 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2096

References

[1] JI R W, KONG M, SUN K, et al.Wake interference of tandem wind turbines considering pitch strategy based on the AL-LDS-Ωnew coupling method[J]. Frontiers in energy research, 2024, 12: 1449454.
[2] JI R W, LI X Q, YE Y L, et al.Hydrodynamic characteristics of offshore wind turbine pile foundations under combined focusing wave-current conditions[J]. Journal of marine science and engineering, 2024, 12(11): 2068.
[3] 纪仁玮, 孙科, 朱仁庆, 等. 新一代涡识别方法在大偏航条件下风电机组复杂尾涡辨识中的适用性研究[J]. 太阳能学报, 2023, 44(7): 486-495.
JI R W, SUN K, ZHU R Q, et al.Study on applicability of new generation vortex identification method for complex wake vortex identification of wind turbines under large yaw conditions[J]. Acta energiae solaris sinica, 2023, 44(7): 486-495.
[4] 纪仁玮, 孙科, 张玉全, 等. 基于改进延迟分离涡方法的潮流能水轮机纵摇运动水动力分析[J]. 太阳能学报, 2023, 44(6): 15-23.
JI R W, SUN K, ZHANG Y Q, et al.Hydrodynamic analysis of pitch motion of tidal current turbine based on improved delayed detached eddy simulation method[J]. Acta energiae solaris sinica, 2023, 44(6): 15-23.
[5] MORISON J R, JOHNSON J W, SCHAAF S A.The force exerted by surface waves on piles[J]. Journal of petroleum technology, 1950, 2(5): 149-154.
[6] FALTINSEN O M, NEWMAN JN, VINJE T.Nonlinear wave loads on a slender vertical cylinder[J]. Journal of fluid mechanics, 1995, 289: 179-198.
[7] MALENICA S, MOLIN B.Third-harmonic wave diffraction by avertical cylinder[J]. Journal of fluid mechanics, 1995, 302: 203-229.
[8] ZHU S J, LIU J B, GUO A X.Wave force measurement on a large-scale vertical cylinder using a visual technique[J]. Ocean engineering, 2023, 280: 114788.
[9] 傅禹舜, 施伟, 张松浩, 等. 强非线性波作用下海上风机动力特性模型试验研究[J]. 南方能源建设, 2023, 10(4): 11-17.
FU Y S, SHI W, ZHANG S H, et al.Experimental research on the dynamic characteristics of offshore wind turbine model under the action of highly nonlinear waves[J]. Southern energy construction, 2023, 10(4): 11-17.
[10] 田恒葵. 典型承台-群桩结构波流联合作用力特性研究[D]. 成都: 西南交通大学, 2019.
TIAN H K.Study on wave-current combined force characteristics of typical pile cap-pile group structure[D]. Chengdu: Southwest Jiaotong University, 2019.
[11] 陈林雅. 波流荷载作用下桩基周围海床响应的实验研究及数值模拟[D]. 成都: 西南交通大学, 2020.
CHEN L Y.Experimental study and numerical simulation of seabed response around pile foundation under wave-current load[D]. Chengdu: Southwest Jiaotong University, 2020.
[12] 曾昕萌. 大型海上风机的非线性水动力特性研究[D]. 大连: 大连理工大学, 2022.
ZENG X M.Study on nonlinear hydrodynamic characteristics of large offshore wind turbines[D]. Dalian: Dalian University of Technology, 2022.
[13] 唐业. 强非线性波作用下大型海上单桩风机的水动力性能研究[D]. 大连: 大连理工大学, 2019.
TANG Y.Study on hydrodynamic performance of large offshore single pile fan under strong nonlinear waves[D]. Dalian: Dalian University of Technology, 2019.
[14] 陈嘉禹, 张金凤, 王峥. 风浪流联合作用下海上风电单桩基础荷载数值模拟研究[J]. 水动力学研究与进展(A辑), 2023, 38(1): 80-87.
CHEN J Y, ZHANG J F, WANG Z.Study on loads on single pile wind turbine foundation under combined action of wind, wave and current[J]. Chinese journal of hydrodynamics, 2023, 38(1): 80-87.
[15] 吴永胜, 练继建, 王兆印, 等. 波浪-水流相互作用模型[J]. 水利学报, 2002, 33(4): 13-17.
WU Y S, LIAN J J, WANG Z Y, et al.Interaction model for wave and current[J]. Journal of hydraulic engineering, 2002, 33(4): 13-17.
[16] 李玉成, 张永刚. 应用Boussinesq方程对非线性波与流相互作用的理论研究[J]. 水动力学研究与进展(A辑), 1996, 11(2): 205-211.
LI Y C, ZHANG Y G.A study of nonlinear interaction of wave-current with Boussinesq equation[J]. Chinese journal of hydrodynamics, 1996, 11(2): 205-211.
[17] 姚顺, 马宁, 丁俊杰, 等. 规则波与流相互作用的数值模拟与不确定度分析[J]. 哈尔滨工程大学学报, 2021, 42(2): 172-178.
YAO S, MA N, DING J J, et al.Numerical simulation and uncertainty analysis of wave-current interaction with regular waves[J]. Journal of Harbin Engineering University, 2021, 42(2): 172-178.
[18] 丁俊杰. 考虑波流相互作用的数值水槽及循环水槽消波装置开发研究[D]. 上海: 上海交通大学, 2019.
DING J J.Development and research of numerical flume and circulating flume wave attenuation device considering wave-current interaction[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[19] 刘红藏, 朱仁庆, 纪仁玮, 等. 基于改进延迟分离涡方法的潮流能水轮机偏航水动力分析[J]. 中国造船, 2024, 65(3): 71-83.
LIU H Z, ZHU R Q, JI R W, et al.Hydrodynamic analysis of tidal stream turbine under yaw conditions based on improved delayed detached eddy simulation[J]. Shipbuilding of China, 2024, 65(3): 71-83.
PDF(2666 KB)

Accesses

Citation

Detail

Sections
Recommended

/