RESEARCH ON ARTIFICIAL INTELLIGENCE-BASED MULTI-MODEL ENSEMBLE FORECAST OF GLOBAL HORIZONTAL IRRADIANCE IN PV STATIONS

Yuan Bin, Yu Tingzhao, Shen Yanbo, Mo Jingyue, Deng Hua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 291-300.

PDF(1896 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1896 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 291-300. DOI: 10.19912/j.0254-0096.tynxb.2023-2100

RESEARCH ON ARTIFICIAL INTELLIGENCE-BASED MULTI-MODEL ENSEMBLE FORECAST OF GLOBAL HORIZONTAL IRRADIANCE IN PV STATIONS

  • Yuan Bin1,2, Yu Tingzhao1,2, Shen Yanbo1,2, Mo Jingyue1,2, Deng Hua3
Author information +
History +

Abstract

Based on the forecast of 4 numerical models: CMA-WSP, CMA-MESO, CMA-GD and WRF-SOLAR, as well as the observation data of 2022 collecting from 4 PV stations in Yangjiang city, Guangdong Province, the monthly multi-model ensemble forecasting experiments of global horizontal irradiance (GHI) were conducted by using LightGBM ensemble model. The results show that multi-model ensemble, when compared with the monthly optimal numerical model, can effectively reduce MAE and RMSE of GHI forecast by a range of 2.47%-32.71% and 5.46%-32.29%,respectively. There are considerable differences in the results of multi-model ensemble at different GHI value intervals. When GHI is below 400 W/m2 , the multi-model ensemble achieves the best performance, with 6.25%-44.44% decrease of MAE and 14.62%-43.07% decrease of RMSE, for 10 months in the entire year. The effect of the ensemble in the GHI interval between 400 W/m2 and 700 W/m2 ranks second, and the decreasing ranges of MAE and RMSE, for 6 months in the entire year, are 0.76%-34.59% and 4.14%-31.11% respectively. The multi-model ensemble has no effect, due to insufficient sample, when GHI is greater than 700 W/m2. Under 4 typical weather conditions, i.e clear, partly cloudy, cloudy and overcast, the multi-model ensemble forecast is the closest to the real observation trend, and it also can illustrate the radiation fluctuation caused by variation of cloud cover.

Key words

solar radiation / forecasting / artificial intelligence / multi-model ensemble / PV station

Cite this article

Download Citations
Yuan Bin, Yu Tingzhao, Shen Yanbo, Mo Jingyue, Deng Hua. RESEARCH ON ARTIFICIAL INTELLIGENCE-BASED MULTI-MODEL ENSEMBLE FORECAST OF GLOBAL HORIZONTAL IRRADIANCE IN PV STATIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 291-300 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2100

References

[1] 国家能源局2023年全国电力工业统计数据[EB/OL].2024: (2024-01-26)[2024-02-02]. https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
NEA statistical data of national power industry of2023[EB/OL]. 2024:(2024-01-26)[2024-02-02]. https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
[2] 金秋实, 王晓, 倪依琳, 等. “双碳” 背景下光伏行业发展研究与展望[J]. 环境保护, 2022, 50(S1): 44-50.
JIN Q S, WANG X, NI Y L, et al.Development research and outlook on photovoltaic industry under carbon peaking and carbon neutrality goals[J]. Environmental protection, 2022, 50(S1): 44-50.
[3] SINGLA P, DUHAN M, SAROHA S.A comprehensive review and analysis of solar forecasting techniques[J]. Frontiers in energy, 2022, 16(2): 187-223.
[4] GB/T 40607—2021, 调度侧风电或光伏功率预测系统技术要求[S].
GB/T 40607—2021, Technical requirements for dispatching side forecasting system of wind or photovoltaic power[S].
[5] SINGLA P, DUHAN M, SAROHA S.A point and interval forecasting of solar irradiance using different decomposition based hybrid models[J]. Earth science informatics, 2023, 16(3): 2223-2240.
[6] SILBER I, VERLINDE J, WANG S H, et al.Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica[J]. Journal of climate, 2019, 32(22): 7935-7949.
[7] SOBRI S, KOOHI-KAMALI S, RAHIM N A.Solar photovoltaic generation forecasting methods: a review[J]. Energy conversion and management, 2018, 156: 459-497.
[8] RAHIMI N, PARK S, CHOI W, et al.A comprehensive review on ensemble solar power forecasting algorithms[J]. Journal of electrical engineering & technology, 2023, 18(2): 719-733.
[9] JOSE D M, VINCENT A M, DWARAKISH G S.Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques[J]. Scientific reports, 2022, 12(1): 4678.
[10] MEENAL R, BINU D, RAMYA K C, et al.Weather forecasting for renewable energy system: a review[J]. Archives of computational methods in engineering, 2022, 29(5): 2875-2891.
[11] GUERMOUI M, BENKACIALI S, GAIRAA K, et al.A novel ensemble learning approach for hourly global solar radiation forecasting[J]. Neural computing and applications, 2022, 34(4): 2983-3005.
[12] SUN S L, WANG S Y, ZHANG G W, et al.A decomposition-clustering-ensemble learning approach for solar radiation forecasting[J]. Solar energy, 2018, 163: 189-199.
[13] CHOI S, HUR J.An ensemble learner-based bagging model using past output data for photovoltaic forecasting[J]. Energies, 2020, 13(6): 1438.
[14] LEE J, WANG W, HARROU F, et al.Reliable solar irradiance prediction using ensemble learning-based models: a comparative study[J]. Energy conversion and management, 2020, 208: 112582.
[15] VAISH J, DATTA S S, SEETHALEKSHMI K.Short term load forecasting using ANN and ensemble models considering solar irradiance[C]//2020 International Conference on Electrical and Electronics Engineering (ICE3). Gorakhpur, India, 2020.
[16] ARORA I, GAMBHIR J, KAUR T.Solar irradiance forecasting using decision tree and ensemble models[C]//2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). Coimbatore, India, 2020.
[17] RAJASUNDRAPANDIYANLEEBANON T, KUMARESAN K, MURUGAN S, et al.Solar energy forecasting using machine learning and deep learning techniques[J]. Archives of computational methods in engineering, 2023, 30(5): 3059-3079.
[18] SINGLA P, DUHAN M, SAROHA S.An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network[J]. Earth science informatics, 2022, 15(1): 291-306.
[19] 蒋锋, 杨嘉伟. 基于多目标优化集成学习的短期太阳辐射预测[J]. 云南大学学报(自然科学版), 2021, 43(3): 451-461.
JIANG F, YANG J W.Short-term solar radiation forecast based on ensemble learning of multi-objective optimization[J]. Journal of Yunnan University (natural sciences edition), 2021, 43(3): 451-461.
[20] 张鸿皓, 杨国华, 郑豪丰, 等. 基于多维特征分析的双层协同太阳辐照度预测[J]. 太阳能学报, 2022, 43(8): 143-149.
ZHANG H H, YANG G H, ZHENG H F, et al.Prediction of bi-layer cooperative solar radiation intensity based on multi-feature analysis[J]. Acta energiae solaris sinica, 2022, 43(8): 143-149.
[21] 马景奕, 王帅, 闫文君, 等. 基于RNN的短期太阳辐照度预测算法研究[J]. 科技通报, 2022, 38(5): 16-22.
MA J Y, WANG S, YAN W J, et al.Research on short term solar radiation prediction algorithm based on RNN[J]. Bulletin of science and technology, 2022, 38(5): 16-22.
[22] 官松泽, 唐钰本, 蔡争, 等. 基于K means++-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2023, 44(12): 170-174.
GUAN S Z, TANG Y B, CAI Z, et al.Ultra-short-term forecast of solar irradiance based on K means++-BI-LSTM[J]. Acta energiae solaris sinica, 2023, 44(12): 170-174.
[23] 师浩琪, 郭力, 刘一欣, 等. 基于多源气象预报总辐照度修正的光伏功率短期预测[J]. 电力自动化设备, 2022, 42(3): 104-112.
SHI H Q, GUO L, LIU Y X, et al.Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J]. Electric power automation equipment, 2022, 42(3): 104-112.
[24] GB/T 37526—2019, 太阳能资源评估方法[S].
GB/T 37526—2019, Assessment method for solar energy[S].
[25] PARK J, MOON J, JUNG S, et al.Multistep-ahead solar radiation forecasting scheme based on the light gradient boosting machine: a case study of Jeju Island[J]. Remote sensing, 2020, 12(14): 2271.
[26] 李张群, 肖子牛, 丁煌, 等. 河南地区降水量和云量与地面太阳短波辐射的关系[J]. 气候与环境研究, 2022, 27(4): 504-512.
LI Z Q, XIAO Z N, DING H, et al.Relationship of surface solar shortwave radiation with precipitation and cloud cover in Henan Province[J]. Climatic and environmental research, 2022, 27(4): 504-512.
[27] 王传辉, 申彦波, 姚锦烽, 等. 3种再分析资料在太阳能资源评估中的适用性[J]. 太阳能学报, 2022, 43(8): 164-173.
WANG C H, SHEN Y B, YAO J F, et al.Applicability of three reanalysis data in assessment of solar energy resources in China[J]. Acta energiae solaris sinica, 2022, 43(8): 164-173.
[28] 杨溯, 石广玉, 王标, 等. 1961—2009年我国地面太阳辐射变化特征及云对其影响的研究[J]. 大气科学, 2013, 37(5): 963-970.
YANG S, SHI G Y, WANG B, et al.Trends in surface solar radiation (SSR) and the effect of clouds on SSR during 1961—2009 in China[J]. Chinese journal of atmospheric sciences, 2013, 37(5): 963-970.
[29] 秦放, 李登宣, 丁煌, 等. 基于CERES数据分析中国云对地表太阳辐射影响特征[J]. 太阳能学报, 2022, 43(9): 8-14.
QIN F, LI D X, DING H, et al.Chracteristics of surface solar radiation and cloud fraction in China based on CERES[J]. Acta energiae solaris sinica, 2022, 43(9): 8-14.
[30] GB/T 35663—2017, 天气预报基本术语[S].
GB/T 35663—2017, Basic terminology of weather forecast[S].
PDF(1896 KB)

Accesses

Citation

Detail

Sections
Recommended

/