ANALYSIS OF TURBULENCE INTENSITY FOR SERIAL WIND TURBINES BASED ON SCADA DATA OF OFFSHORE WIND FARM

Wang Yin, Chen Junpeng, Liu Feihong, Wu Di, Miao Desheng, Zhou Zicheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 504-512.

PDF(1280 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1280 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 504-512. DOI: 10.19912/j.0254-0096.tynxb.2023-2109

ANALYSIS OF TURBULENCE INTENSITY FOR SERIAL WIND TURBINES BASED ON SCADA DATA OF OFFSHORE WIND FARM

  • Wang Yin, Chen Junpeng, Liu Feihong, Wu Di, Miao Desheng, Zhou Zicheng
Author information +
History +

Abstract

In order to explore the turbulence intensity variation of each turbine position under the influence of multiple-wake interactions in an offshore wind farm, as well as to examine the differences between actual turbulence intensity and designed turbulence, based on the actual SCADA data from an offshore wind farm and the wake-additional turbulence model used in the IEC standard. A multidimensional comparison and analysis was conducted in this paper, which focues on the impact of wind speed and turbine spacing on the turbulence of serial turbines, and the discrepancies between the measured turbulence intensity and the theoretical predictions. The following laws were obtained: under the rated wind speed, the increment of turbulence intensity for serial turbines shows a trend of gradually increasing with the wind speed, reaching near-maximum turbulence intensity when approaching the rated rotational speed, and then decreasing with the further increase of wind speed, which is related to the turbine operational strategy of variable rotate speed and variable pitch angle. With the spacing of the downstream turbine increased, the turbulence intensity is reduced. When designing wind turbines based on the methods for calculating additional and overall turbulence as specified in the IEC standards, it can effectively ensure that the wind turbines within a wind farm operate within a safe turbulence environment.

Key words

offshore wind farms / wakes / turbulence / wind turbines / additional turbulence / wake overlaps

Cite this article

Download Citations
Wang Yin, Chen Junpeng, Liu Feihong, Wu Di, Miao Desheng, Zhou Zicheng. ANALYSIS OF TURBULENCE INTENSITY FOR SERIAL WIND TURBINES BASED ON SCADA DATA OF OFFSHORE WIND FARM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 504-512 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2109

References

[1] LEE J, ZHAO F, Global wind report 2022[R]. Brussels: Global Wind Energy Council, 2022: 104-104.
[2] DIMITROV N, NATARAJAN A, KELLY M.Model of wind shear conditional on turbulence and its impact on wind turbine loads[J]. Wind energy, 2015, 18(11): 1917-1931.
[3] 邓英, 李嘉楠, 刘河生, 等. 风电机组尾流与疲劳载荷关系分析[J]. 农业工程学报, 2017, 33(10): 239-244.
DENG Y, LI J N, LIU H S, et al.Analysis on relationship between wake and fatigue load of wind turbines[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 239-244.
[4] 付德义, 薛扬, 焦渤, 等. 湍流强度对风电机组疲劳等效载荷的影响[J]. 华北电力大学学报(自然科学版), 2015, 42(1): 45-50.
FU D Y, XUE Y, JIAO B, et al.Effects on the turbulence intensity to wind turbine fatigue equivalent load[J]. Journal of North China Electric Power University (natural science edition), 2015, 42(1): 45-50.
[5] 巫发明, 杨从新, 王靛, 等. 湍流强度对风电机组动力学特性及载荷的影响[J]. 农业工程学报, 2020, 36(13): 48-55.
WU F M, YANG C X, WANG D, et al.Effects of turbulence intensity on dynamic characteristics and load of wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 48-55.
[6] CHAMORRO L P, PORTÉ-AGEL F.A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects[J]. Boundary-layer meteorology, 2009, 132(1): 129-149.
[7] AITKEN M L, BANTA R M, PICHUGINA Y L, et al.Quantifying wind turbine wake characteristics from scanning remote sensor data[J]. Journal of atmospheric and oceanic technology, 2014, 31(4): 765-787.
[8] AHMADI M H B, YANG Z Y. The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine[J]. Renewable energy, 2020, 151: 1008-1015.
[9] 高晓霞, 王腾渊, 赵飞, 等. 基于激光雷达扫描数据的湍流强度影响下风力机尾流特性研究[J]. 太阳能学报, 2019, 40(12): 3645-3650.
GAO X X, WANG T Y, ZHAO F, et al.Study on influence of turbulence intensity on wind turbine wake characteristics using lidars scanning data[J]. Acta energiae solaris sinica, 2019, 40(12): 3645-3650.
[10] CHURCHFIELD M, LEE S, MORIARTY P, et al.A large-eddy simulation of wind-plant aerodynamics[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, 2012: 537.
[11] XIE S B, ARCHER C.Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind energy, 2015, 18(10): 1815-1838.
[12] CRESPO A, HERNÁNDEZ J. Turbulence characteristics in wind-turbine wakes[J]. Journal of wind engineering and industrial aerodynamics, 1996, 61: 71-85.
[13] 张润泽. 基于数值模拟的多风机尾流模型研究[D]. 重庆: 重庆大学, 2021.
ZHANG R Z.Study of multi-turbine wake models based on numerical simulation[D]. Chongqing: Chongqing University, 2021.
[14] 张立栋, 田史琳, 冯江哲, 等. 不同容量风力机串列布置尾流特性数值模拟[J/OL]. 中国电机工程学报: 1-10[2024-03-06].
ZHANG L D, TIAN S L, FENG J Z, et al.Numerical simulation of wake characteristics of wind turbines with different capacities arranged in series[J/OL]. Proceedings of the CSEE: 1-10[2024-03-06].
[15] CHAMORRO L P, PORTÉ-AGEL F.Turbulent flow inside and above a wind farm: a wind-tunnel study[J]. Energies, 2011, 4(11): 1916-1936.
[16] 郑一丹, 刘惠文, 郑源, 等. 错列布局风电场尾流演变实验研究[J]. 中国电机工程学报, 2023, 43(4): 1463-1471.
ZHENG Y D, LIU H W, ZHENG Y, et al.Experimental study on the wakes evolution of a staggered wind farm[J]. Proceedings of the CSEE, 2023, 43(4): 1463-1471.
[17] 马高生, 常吉祥, 李德顺, 等. 前后风力机尾流干扰实验分析及混合尾流模型验证[J]. 太阳能学报, 2023, 44(6): 390-397.
MA G S, CHANG J X, LI D S, et al.Experiment analysis of front and rear wind turbine wake interference and verification of mixed wake model[J]. Acta energiae solaris sinica, 2023, 44(6): 390-397.
[18] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges[J]. Environmental research letters, 2013, 8(1): 015002.
[19] 杨从新, 何攀, 张旭耀, 等. 风电场中多台风力机的数值模拟[J]. 太阳能学报, 2021, 42(2): 49-55.
YANG C X, HE P, ZHANG X Y, et al.Numerical simulation of multiple wind turbines in wind farms[J]. Acta energiae solaris sinica, 2021, 42(2): 49-55.
[20] 王大伟, 李文田, 李兵兵, 等. 基于测风数据的多风机尾流干涉特性试验研究[J]. 节能, 2022, 41(11): 45-49.
WANG D W, LI W T, LI B B, et al.Research on wake interference characteristics of multi-wind turbine based on wind measurement data[J]. Energy conservation, 2022, 41(11): 45-49.
[21] 张皓, 易侃, 张子良, 等. 基于SCADA数据海上风电场解析尾流模型可靠性与尾流叠加研究[J]. 可再生能源, 2022, 40(10): 1352-1357.
ZHANG H, YI K, ZHANG Z L, et al.Analytical wake model reliability and wake superposition analysis for offshore wind farm based on SCADA data[J]. Renewable energy resources, 2022, 40(10): 1352-1357.
[22] 袁飞, 夏德喜, 汪正军. 基于SCADA数据的风电机组群尾流效应计算与验证研究[J]. 智慧电力, 2023, 51(7): 23-30.
YUAN F, XIA D X, WANG Z J.Calculation and verification of wake effect on wind turbine based on SCADA data[J]. Smart power, 2023, 51(7): 23-30.
[23] 高峰, 凌新梅, 刘强. 基于SCADA数据的风电机组偏航控制参数优化[J]. 太阳能学报, 2019, 40(6): 1739-1746.
GAO F, LING X M, LIU Q.Parameter optimization of yaw control for wind turbine based on SCADA data[J]. Acta energiae solaris sinica, 2019, 40(6): 1739-1746.
[24] 向玲, 邓泽奇, 赵玥. 基于SCADA数据的风电机组异常识别方法[J]. 太阳能学报, 2020, 41(11): 278-284.
XIANG L, DENG Z Q, ZHAO Y.Anomaly recognition method for wind turbines based on SCADA data[J]. Acta energiae solaris sinica, 2020, 41(11): 278-284.
[25] 胡澜也, 蒋文博, 李艳婷. 基于LightGBM的风力发电机故障诊断[J]. 太阳能学报, 2021, 42(11): 255-259.
HU L Y, JIANG W B, LI Y T.Fault diagnosis for wind turbine based on LightGBM[J]. Acta energiae solaris sinica, 2021, 42(11): 255-259.
[26] KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European Wind Energy Association Conference and Exhibition. Rome, Italy, 1986, 1: 407-410.
[27] SERRANO GONZÁLEZ J, BURGOS PAYÁN M, SANTOS J M R, et al. A review and recent developments in the optimal wind-turbine micro-siting problem[J]. Renewable and sustainable energy reviews, 2014, 30: 133-144.
[28] MITTAL P, KULKARNI K, MITRA K.A novel hybrid optimization methodology to optimize the total number and placement of wind turbines[J]. Renewable energy, 2016, 86: 133-147.
[29] IEC 61400-1, Wind energy generation systems: part 1: design requirements[S].
PDF(1280 KB)

Accesses

Citation

Detail

Sections
Recommended

/