ECONOMIC AND EMISSION REDUCTION BENEFIT ANALYSIS OF TRANS-REGIONAL UTILIZATION OF PHOTOELECTRIC-LIQUID HYDROGEN IN CHINA

Zheng Yuhua, Zhou Yaxi, Hu Hangjian, Duan Zhixiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 153-163.

PDF(1266 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1266 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 153-163. DOI: 10.19912/j.0254-0096.tynxb.2023-2113

ECONOMIC AND EMISSION REDUCTION BENEFIT ANALYSIS OF TRANS-REGIONAL UTILIZATION OF PHOTOELECTRIC-LIQUID HYDROGEN IN CHINA

  • Zheng Yuhua1, Zhou Yaxi1, Hu Hangjian2, Duan Zhixiang2
Author information +
History +

Abstract

Considering the distribution characteristics of hydrogen production through photovoltaic electrolysis in China and the transportation methods of hydrogen energy, supply chain schemes for short-distance distribution of gaseous and liquid hydrogen, and long-distance transportation of liquid hydrogen are proposed. First, the economic and environmental benefits of different hydrogen supply chains were analyzed in terms of levelized-cost and CO2 emission intensity. Second, considering the uncertainty of technological development, Monte Carlo simulations were conducted to analyze the future development trends of different supply chain schemes in 2030 and 2050. The results show that when the hydrogen distribution distance is less than 400 km, the levelzed cost of gaseous hydrogen within each province is lower than that of liquid hydrogen within the province or transported from external provinces. However, the transportation of liquid hydrogen from external provinces generally offers advantages in reducing CO2 emission. Transferring liquid hydrogen to regions with poor solar energy resources and high costs of photovoltaic green hydrogen, such as central China, already has cost advantages. By 2030, the cost advantage of transporting liquid hydrogen from other provinces will gradually become apparent, especially in the Central, Southwestern, and Eastern regions of China. By 2050, the cost and environmental advantages of liquid hydrogen will be further highlighted, and the Northeast, North China, South China, and Northwest regions should consider developing supply chains for liquid hydrogen within the province and for transporting liquid hydrogen from external provinces.

Key words

photovoltaics / hydrogen economy / renewable fuels / hydrogen refueling station / liquid hydrogen / carbon emissions

Cite this article

Download Citations
Zheng Yuhua, Zhou Yaxi, Hu Hangjian, Duan Zhixiang. ECONOMIC AND EMISSION REDUCTION BENEFIT ANALYSIS OF TRANS-REGIONAL UTILIZATION OF PHOTOELECTRIC-LIQUID HYDROGEN IN CHINA[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 153-163 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2113

References

[1] 黄俊生, 毛保华, 吴雪妍. 碳中和战略下我国交通运输行业碳减排策略研究[J]. 北京交通大学学报(社会科学版), 2023, 22(2): 107-116.
HUANG J S, MAO B H, WU X Y.Research on carbon emission reduction strategy of China’s transportation industry under carbon neutrality strategy[J]. Journal of Beijing Jiaotong University (social sciences edition), 2023, 22(2): 107-116.
[2] LI S X, LONG J H, SUI P C, et al.Addition of hydrogen refueling for fuel cell bus fleet to existing natural gas stations: a case study in Wuhan, China[J]. International journal of energy research, 2019, 43(13): 7557-7572.
[3] TANÇ B, ARAT H T, BALTACıOĞLU E, et al. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J]. International journal of hydrogen energy, 2019, 44(20): 10120-10128.
[4] 王彦哲, 欧训民, 周胜. 基于学习曲线的中国未来制氢成本趋势研究[J]. 气候变化研究进展, 2022, 18(3): 283-293.
WANG Y Z, OU X M, ZHOU S.Future cost trend of hydrogen production in China based on learning curve[J]. Climate change research, 2022, 18(3): 283-293.
[5] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[6] HE G, KAMMEN D M.Where, when and how much solar is available? A provincial-scale solar resource assessment for China[J]. Renewable energy, 2016, 85: 74-82.
[7] DU Z M, ZHENG J Y, DAI J F, et al.Construction of green-hydrogen supply system in China: reflections and suggestions[J]. Chinese journal of engineering science, 2022, 24(6): 64.
[8] BRÄNDLE G, SCHÖNFISCH M, SCHULTE S. Estimating long-term global supply costs for low-carbon hydrogen[J]. Applied energy, 2021, 302: 117481.
[9] JIA H C, LIANG L, XIE J Q, et al.Environmental effects of technological improvements in polysilicon photovoltaic systems in China: a life cycle assessment[J]. Sustainability, 2022, 14(14): 8670.
[10] CAO S L, ALANNE K.Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle[J]. Applied energy, 2015, 158: 568-583.
[11] GU Y, CHEN Q Q, XUE J L, et al.Comparative techno-economic study of solar energy integrated hydrogen supply pathways for hydrogen refueling stations in China[J]. Energy conversion and management, 2020, 223: 113240.
[12] MORADI R, GROTH K M.Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. International journal of hydrogen energy, 2019, 44(23): 12254-12269.
[13] HUO L P, LIN H Y, SUN Q.Least-cost hydrogen supply chain for off-site hydrogen production from large scale renewable power in China: a case study of China’s Western Inner Mongolia[J]. Energy proceedings, 2021, 23: 468.
[14] 徐硕, 余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(6): 1-12.
XU S, YU B Y.Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology (social sciences edition), 2021, 23(6): 1-12.
[15] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[16] 张振扬, 解辉. 液氢的制、储、运技术现状及分析[J]. 可再生能源, 2023, 41(3): 298-305.
ZHANG Z Y, XIE H.Status quo and analysis of liquid hydrogen production, storage and transportation technology[J]. Renewable energy resources, 2023, 41(3): 298-305.
[17] BAUER A, MAYER T, SEMMEL M, et al.Energetic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen[J]. International journal of hydrogen energy, 2019, 44(13): 6795-6812.
[18] FRANCO B A, BAPTISTA P, NETO R C, et al.Assessment of offloading pathways for wind-powered offshore hydrogen production: energy and economic analysis[J]. Applied energy, 2021, 286: 116553.
[19] 张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
ZHANG S, ZHENG J Y, DAI J F, et al.Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta energiae solaris sinica, 2024, 45(1): 457-465.
[20] 熊亚林, 许壮, 王雪颖, 等. 我国加氢基础设施关键技术及发展趋势分析[J]. 储能科学与技术, 2022, 11(10): 3391-3400.
XIONG Y L, XU Z, WANG X Y, et al.Analysis of key technologies and development trends of hydrogen refueling stations in China[J]. Energy storage science and technology, 2022, 11(10): 3391-3400.
[21] 刘峻, 赵汪, 高学强, 等. 全球加氢站产业、技术及标准进展综述[J]. 太阳能学报, 2022, 43(6): 362-372.
LIU J, ZHAO W, GAO X Q, et al.Review on advances in industry, technology, and standard of global hydrogen refuelling stations[J]. Acta energiae solaris sinica, 2022, 43(6): 362-372.
[22] 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13.
HUANG X X, LIAN J J, SHEN W, et al.Economic analysis of China’s large-scale hydrogen energy supply chain[J]. Southern energy construction, 2020, 7(2): 1-13.
[23] BÖHM H, GOERS S, ZAUNER A. Estimating future costs of power-to-gas: a component-based approach for technological learning[J]. International journal of hydrogen energy, 2019, 44(59): 30789-30805.
[24] Bloomberg New Energy Finance (BNEF). Hydrogen: the economics of production from renewables: Costs to plummet[R/OL].2019. https://about.bnef.com/.
[25] WEI M, SMITH S J, SOHN M D.Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US[J]. Applied energy, 2017, 191: 346-357.
[26] 翁琳, 陈剑波. 光伏系统基于全生命周期碳排放量计算的环境与经济效益分析[J]. 上海理工大学学报, 2017, 39(3): 282-288.
WENG L, CHEN J B.Environmental and economic analysis on the carbon dioxide emissions calculation in the life cycle of a photovoltaic system[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(3): 282-288.
[27] SCHULTZ H S, CARVALHO M.Design, greenhouse emissions, and environmental payback of a photovoltaic solar energy system[J]. Energies, 2022, 15(16): 6098.
[28] ZHANG W Z, LI X Y, YANG J Z, et al.Economic analysis of hydrogen production from China’s province-level power grid considering carbon emissions[J]. Clean energy, 2023, 7(1): 30-40.
[29] 国家气候战略中心. 2019年度减排项目中国区域电网基准线排放因子[R]. 2019.
National Center for Climate Change Strategy and International Cooperation(NCSC). China’s regional power grid baseline emission factors for 2019 emission reduction projects[R]. 2019.
[30] CHEN R D, XU P P, YAO H N.Decarbonization of China’s regional power grid by 2050 in the government development planning scenario[J]. Environmental impact assessment review, 2023, 101: 107129.
[31] 杨昌辉, 石瑞智. 我国分布式光伏发电项目经济效益评价研究: 基于区域层面不同电价情景的分析[J]. 价格理论与实践, 2021(12): 167-171.
YANG C H, SHI R Z.Study on the evaluation of economic benefits of distributed photovoltaic power generation projects in China: analysis based on different tariff scenarios at regional level[J]. Price: theory & practice, 2021(12): 167-171.
[32] JANG D, KIM J, KIM D, et al.Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies[J]. Energy conversion and management, 2022, 258: 115499.
[33] 中国氢能联盟. 中国氢能及燃料电池产业手册[R]. 2021.
China Hydrogen Energy Alliance. China hydrogen and fuel cell industry handbook[R]. 2021.
[34] GHAEBI PANAH P, CUI X T, BORNAPOUR M, et al.Marketability analysis of green hydrogen production in Denmark: scale-up effects on grid-connected electrolysis[J]. International journal of hydrogen energy, 2022, 47(25): 12443-12455.
[35] 中国电动汽车百人会. 中国氢能产业发展报告2020[R]. 2020.
China EV100. China's hydrogen industry development report 2020[R]. 2020.
[36] TANG O, REHME J, CERIN P.Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: on-grid or off-grid?[J]. Energy, 2022, 241: 122906.
[37] LI Y, CHEN D W, LIU M, et al.Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China[J]. International journal of hydrogen energy, 2017, 42(4): 1899-1911.
[38] 中国氢能联盟. 中国氢能源与燃料电池产业白皮书[R]. 2019.
China Hydrogen Energy Alliance. China Hydrogen Energy and Fuel Cell Industry White Paper[R]. 2019.
[39] CARDELLA U, DECKER L, KLEIN H.Roadmap to economically viable hydrogen liquefaction[J]. International journal of hydrogen energy, 2017, 42(19): 13329-13338.
[40] REDDI K, ELGOWAINY A, RUSTAGI N, et al.Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen[J]. International journal of hydrogen energy, 2017, 42(34): 21855-21865.
[41] CHEN Q Q, GU Y, TANG Z Y, et al.Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai[J]. Energy, 2021, 237: 121584.
[42] 李妍, 常皓明, 林世响, 等. 外供氢与现场制氢加氢站的氢气成本分析[J]. 煤气与热力, 2022, 42(3): 26-29.
LI Y, CHANG H M, LIN S X, et al.Hydrogen cost analysis of external hydrogen supply and on-site hydrogen production refueling station[J]. Gas & heat, 2022, 42(3): 26-29.
[43] MAYER T, SEMMEL M, GUERRERO MORALES M A, et al. Techno-economic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen[J]. International journal of hydrogen energy, 2019, 44(47): 25809-25833.
[44] 张智, 赵苑瑾, 蔡楠. 中国氢能产业技术发展现状及未来展望[J]. 天然气工业, 2022, 42(5): 156-165.
ZHANG Z, ZHAO Y J, CAI N.Technological development status and prospect of hydrogen energy industry in China[J]. Natural gas industry, 2022, 42(5): 156-165.
[45] 单彤文, 宋鹏飞, 李又武, 等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工), 2020, 45(1): 85-90, 96.
SHAN T W, SONG P F, LI Y W, et al.Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural gas chemical industry, 2020, 45(1): 85-90, 96.
[46] IRENA. Renewable power generation costs in 2022[M]. Abu Dhabi: International Renewable Energy Agency, 2023: 89-112.
[47] AASADNIA M, MEHRPOOYA M.Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied energy, 2018, 212: 57-83.
PDF(1266 KB)

Accesses

Citation

Detail

Sections
Recommended

/