STUDY ON OCEAN CURRENT ENERGY CAPTURING PERFORMANCE BASED ON VORTEX-INDUCED VIBRATION WITH TRIBOELECTRIC NANOGENERATOR

Xu Peng, Yu Linjie, Hong Mingjie, Zhang Zhaode, Li He, Xu Huixing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 692-699.

PDF(2306 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2306 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 692-699. DOI: 10.19912/j.0254-0096.tynxb.2023-2131

STUDY ON OCEAN CURRENT ENERGY CAPTURING PERFORMANCE BASED ON VORTEX-INDUCED VIBRATION WITH TRIBOELECTRIC NANOGENERATOR

  • Xu Peng1,2, Yu Linjie1, Hong Mingjie1, Zhang Zhaode1, Li He1, Xu Huixing3
Author information +
History +

Abstract

Due to the substantial study performed by academics globally, triboelectric nanogenerators (TENGs) are attracting significant attention in area of ocean energy acquiring and utilization. According to the advantages of TENG in low-frequency energy harvesting, this study presents an ocean current energy capturing device using TENG based on vortex-induced vibration (VIV). The device's structure and working principle are clarified, and the output characteristics of the freestanding-layer TENG with multi-grating structure are simulated by COMSOL software. The effect of the pressure between the TENG friction surfaces on the electrical energy output is analyzed by means of linear module tests. Finally, experiment in a recirculating flume was conducted to obtain the electrical energy output data of the generator model. It is found that the model device can output the power of 100 microwatts at low flow rate. This study provides a new research idea for the collection and utilization of ocean current energy at low flow velocity.

Key words

ocean current / nanogenerator / energy harvesting / circular cylinder / multi-grating structure

Cite this article

Download Citations
Xu Peng, Yu Linjie, Hong Mingjie, Zhang Zhaode, Li He, Xu Huixing. STUDY ON OCEAN CURRENT ENERGY CAPTURING PERFORMANCE BASED ON VORTEX-INDUCED VIBRATION WITH TRIBOELECTRIC NANOGENERATOR[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 692-699 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2131

References

[1] LAGO L I, PONTA F L, CHEN L.Advances and trends in hydrokinetic turbine systems[J]. Energy for sustainable development, 2010, 14(4): 287-296.
[2] ESTEBAN M, LEARY D.Current developments and future prospects of offshore wind and ocean energy[J]. Applied energy, 2012, 90(1): 128-136.
[3] 刘翔宇. 基于旗型摩擦纳米发电机的海流能收集技术研究[D]. 大连: 大连海事大学, 2022.
LIU X Y.Research on flag-like triboelectric nanogenerator for harvesting ocean current energy[D]. Dalian: Dalian Maritime University, 2022.
[4] 吕艳芳, 李佳冀, 潘思言, 等. 涡激振动发电装置及其关键技术[J]. 装备制造技术, 2020(1): 161-165.
LYU Y F, LI J J, PAN S Y, et al.Vortex induced vibration generator and its key technology[J]. Equipment manufacturing technology, 2020(1): 161-165.
[5] LI X J, LUO J J, HAN K, et al.Stimulation of ambient energy generated electric field on crop plant growth[J]. Nature food, 2022, 3(2): 133-142.
[6] ZHANG D H, SHI J W, SI Y L, et al.Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy[J]. Nano energy, 2019, 61: 132-140.
[7] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.VIVACE(vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of offshore mechanics and Arctic engineering, 2008, 130(4): 1.
[8] LEE J H, BERNITSAS M M.High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter[J]. Ocean engineering, 2011, 38(16): 1697-1712.
[9] 李俊, 罗竹梅, 郭涛, 等. 基于熵产理论的三维涡激振动低速水流能俘能分析[J]. 太阳能学报, 2023, 44(6): 45-52.
LI J, LUO Z M, GUO T, et al.Energy capture analysis of three-dimensional vortex-induced vibration of low-speed water flow based on entropy production theory[J]. Acta energiae solaris sinica, 2023, 44(6): 45-52.
[10] 宋汝君. 圆柱型压电俘能器的流激振动及其发电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SONG R J.Research on flow-induced vibration and energy harvesting performance of cylinderical piezoelectric energy harvesters[D]. Harbin: Harbin Institute of Technology, 2016.
[11] 谭俊哲, 王保振, 袁鹏, 等. 湍流强度对涡激振动潮流能转换装置振子响应影响研究[J]. 太阳能学报, 2020, 41(10): 20-26.
TAN J Z, WANG B Z, YUAN P, et al.Study on turbulence intensity influence on cylindrical oscillator response of viv tidal energy conversion device[J]. Acta energiae solaris sinica, 2020, 41(10): 20-26.
[12] CHEN P F, AN J, SHU S, et al.Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture[J]. Advanced energy materials, 2021, 11(9): 2003066.
[13] ZHANG C G, YUAN W, ZHANG B F, et al.A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting[J]. Small, 2023, 19(52): e2304412.
[14] 王焕润. 基于摩擦纳米发电机的波浪能采集系统研究[D]. 烟台: 烟台大学, 2023.
WANG H R.Research on wave energy acquisition system based on triboelectric nanogenerator[D]. Yantai: Yantai University, 2023.
[15] WANG Y, LIU X Y, CHEN T Y, et al.An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition[J]. Nano energy, 2021, 90: 106503.
[16] 曹东兴, 丁相栋, 张伟, 等. 磁力增强涡激振动压电俘能器仿真及实验[J]. 振动测试与诊断, 2022, 42(3): 530-536, 619.
CAO D X, DING X D, ZHANG W, et al.Simulation and experiment of vortex-induced vibration energy harvester with magnet enhancement[J]. Journal of vibration, measurement & diagnosis, 2022, 42(3): 530-536, 619.
[17] DAVIES D K.Charge generation on dielectric surfaces[J]. Journal of physics D applied physics, 1969, 2(11): 1533-1537.
PDF(2306 KB)

Accesses

Citation

Detail

Sections
Recommended

/