NUMERICAL STUDY ON CYLINDRICAL OSCILLATING WATER COLUMN DEVICE WITH C-TYPE BAFLE

Shan Zhigang, Pan Jiapeng, Wang Chengcan, Sun Miaojun, He Fang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 700-705.

PDF(1220 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1220 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 700-705. DOI: 10.19912/j.0254-0096.tynxb.2023-2132

NUMERICAL STUDY ON CYLINDRICAL OSCILLATING WATER COLUMN DEVICE WITH C-TYPE BAFLE

  • Shan Zhigang1, Pan Jiapeng2, Wang Chengcan1, Sun Miaojun1, He Fang2
Author information +
History +

Abstract

Utilizing the Star-CCM+ software, a three-dimensional numerical wave flume is established to investigate the influence of both C-type baffle opening angle and wave direction on the OWC's performance. The results show that the C-type baffle can significantly improve the wave energy capture efficiency of the OWC device. The optimal efficiency gain is achieved at an opening angle of 180° under normal wave conditions, with an increase of up to 43.7% compared to the unbaffled OWC. However, baffles can also impede wave energy entry into the chamber when opening angles are less than 180° or under oblique wave conditions. This leads to the water level and pressure oscillations within the chamber to weaken, diminishing efficiency gains and even potentially producing negative effects.

Key words

wave energy / hydrodynamic / wave energy conversion / oscillating water column / C-type baffle

Cite this article

Download Citations
Shan Zhigang, Pan Jiapeng, Wang Chengcan, Sun Miaojun, He Fang. NUMERICAL STUDY ON CYLINDRICAL OSCILLATING WATER COLUMN DEVICE WITH C-TYPE BAFLE[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 700-705 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2132

References

[1] CAPELLÁN-PÉREZ I, MEDIAVILLA M, DE CASTRO C, et al. Fossil fuel depletion and socio-economic scenarios: an integrated approach[J]. Energy, 2014, 77: 641-666.
[2] HE F, LIU Y B, PAN J P, et al.Advanced ocean wave energy harvesting: current progress and future trends[J]. Journal of Zhejiang University-science A, 2023, 24(2): 91-108.
[3] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions series A, mathematical, physical, and engineering sciences, 2012, 370(1959): 235-245.
[4] DOYLE S, AGGIDIS G A.Development of multi-oscillating water columns as wave energy converters[J]. Renewable and sustainable energy reviews, 2019, 107: 75-86.
[5] 李猛, 吴必军, 伍儒康. 直管型中心管波能模型的数值计算和实验研究[J]. 太阳能学报, 2022, 43(3): 80-86.
LI M, WU B J, WU R K.Numerical calculation and experimental study on straight center pipe spar buoy wave energy model[J]. Acta energiae solaris sinica, 2022, 43(3): 80-86.
[6] ZHENG S M, ZHANG Y L, IGLESIAS G.Coast/breakwater-integrated OWC: a theoretical model[J]. Marine structures, 2019, 66: 121-135.
[7] 李猛, 吴必军, 伍儒康, 等. 前方后尖浮舱五边形后弯管水槽性能实验研究[J]. 太阳能学报, 2019, 40(12): 3339-3347.
LI M, WU B J, WU R K, et al.Experimental study on performance of pentagonal backward bent duct buoy with buoyancy tank square in front and triangular in back in 2d wave tank[J]. Acta energiae solaris sinica, 2019, 40(12): 3339-3347.
[8] HUANG S J, HUANG Z H.Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns[J]. Renewable energy, 2022, 195: 344-356.
[9] HE F, ZHANG H S, ZHAO J J, et al.Hydrodynamic performance of a pile-supported OWC breakwater: an analytical study[J]. Applied ocean research, 2019, 88: 326-340.
[10] MAYON R, NING D Z, ZHANG C W, et al.Wave energy capture by an omnidirectional point sink oscillating water column system[J]. Applied energy, 2021, 304: 117795.
[11] 郭权势, 邓争志, 万占鸿. 集成于方箱防波堤的双气室振荡水柱波能装置转换效率研究[J]. 海洋工程, 2022, 40(2): 106-117.
GUO Q S, DENG Z Z, WAN Z H.A study on the wave power extraction efficiency of the dual-chamber OWC converter integrated into a rectangular breakwater[J]. The ocean engineering, 2022, 40(2): 106-117.
[12] EVANS D V.The oscillating water column wave-energy device[J]. IMA journal of applied mathematics, 1978, 22(4): 423-433.
[13] ELHANAFI A, FLEMING A, MACFARLANE G, et al.Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column-wave energy converter[J]. Renewable energy, 2017, 105: 209-231.
[14] ZHOU Y, ZHANG C W, NING D Z.Hydrodynamic investigation of a concentric cylindrical OWC wave energy converter[J]. Energies, 2018, 11(4): 985.
[15] 何方, 唐晓, 潘佳鹏, 等. 波能利用型圆筒透空堤水动力特性实验研究[J]. 太阳能学报, 2022, 43(12): 469-475.
HE F, TANG X, PAN J P, et al.Experimental investigation on hydrodynamic characteristics of wave-energy-utilization type cylindrical open breakwater[J]. Acta energiae solaris sinica, 2022, 43(12): 469-475.
[16] XU C H, HUANG Z H, DENG Z Z.Experimental and theoretical study of a cylindrical oscillating water column device with a quadratic power take-off model[J]. Applied ocean research, 2016, 57: 19-29.
[17] XU C H, HUANG Z H.Three-dimensional CFD simulation of a circular OWC with a nonlinear power-takeoff: model validation and a discussion on resonant sloshing inside the pneumatic chamber[J]. Ocean engineering, 2019, 176: 184-198.
[18] GODA Y, SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C]//Coastal Engineering 1976. Honolulu, Hawaii, USA, 1977: 828-845.
[19] DENG Z Z, HUANG Z H, LAW A W K. Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube-sector-shaped structure[J]. Applied ocean research, 2013, 42: 114-123.
[20] ZHENG S M, ZHU G X, SIMMONDS D, et al.Wave power extraction from a tubular structure integrated oscillating water column[J]. Renewable energy, 2020, 150: 342-355.
PDF(1220 KB)

Accesses

Citation

Detail

Sections
Recommended

/