FAULT DIAGNOSIS METHOD OF WIDN TURBINE GEARBOX BASED ON MULTI-CORE PARELLEL RFECV-GNB

Wang Jinhua, Yuan Shanqin, Cao Jie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 550-558.

PDF(1417 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1417 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 550-558. DOI: 10.19912/j.0254-0096.tynxb.2023-2150

FAULT DIAGNOSIS METHOD OF WIDN TURBINE GEARBOX BASED ON MULTI-CORE PARELLEL RFECV-GNB

  • Wang Jinhua1, Yuan Shanqin1, Cao Jie2
Author information +
History +

Abstract

This paper addresses the critical challenges of poor robustness in noisy environments and low diagnostic accuracy when labelled samples are scarce in deep learning-based wind turbine gearbox fault diagnosis. This paper proposes a novel method that integrates RFECV and GNB for wind turbine gearbox fault diagnosis. This method integrates the capability of RFECV to effectively extract essential fault signatures from limited fault data with the high computational efficiency of GNB for wind turbine gearbox fault diagnosis. To mitigate the prolonged training time of RFECV, a CPU parallelized task “packaging” algorithm is introduced, enhancing modeling performance via the over-subscription of LCPUs and efficient load distribution among LCPUs. Extensive experiments on multiple fault datasets demonstrate that the proposed method outperforms traditional approaches with significantly superior diagnostic accuracy and modelling speed under the same number of faulty samples.

Key words

wind turbines / gearbox / fault diagnosis / Bayesian theorem / feature selection / CPU parallelism

Cite this article

Download Citations
Wang Jinhua, Yuan Shanqin, Cao Jie. FAULT DIAGNOSIS METHOD OF WIDN TURBINE GEARBOX BASED ON MULTI-CORE PARELLEL RFECV-GNB[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 550-558 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2150

References

[1] 王宏伟, 孙文磊, 张小栋, 等. 基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究[J]. 太阳能学报, 2022, 43(4): 288-295.
WANG H W, SUN W L, ZHANG X D, et al.Fault diagnosis method of wind turbine’s gearbox based on composite multiscale dispersion entropy of optimised VMD and LSTM[J]. Acta energiae solaris sinica, 2022, 43(4): 288-295.
[2] LEI Y G, LIN J, ZUO M J, et al.Condition monitoring and fault diagnosis of planetary gearboxes: a review[J]. Measurement, 2014, 48: 292-305.
[3] WANG T Y, HAN Q K, CHU F L, et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical systems and signal processing, 2019, 126: 662-685.
[4] LIU D D, CUI L L, CHENG W D.Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation[J]. Renewable energy, 2023, 206: 645-657.
[5] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7): 409-418.
XU S, DENG A D, YANG H Q, et al.Rotating machinery fault diagnosis method based on improved residual neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 409-418.
[6] 肖俊青, 金江涛, 李春, 等. 基于深度学习风力机齿轮箱的故障诊断[J]. 太阳能学报, 2023, 44(5): 302-309.
XIAO J Q, JIN J T, LI C, et al.Fault diagnosis of wind turbine gearbox based on deep learning[J]. Acta energiae solaris sinica, 2023, 44(5): 302-309.
[7] ZHANG L W, FAN Q, LIN J, et al.A nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes under nonstationary conditions[J]. Engineering applications of artificial intelligence, 2023, 119: 105735.
[8] YU X X, TANG B P, ZHANG K.Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 6502714.
[9] HUANG D J, ZHANG W A, GUO F H, et al.Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox[J]. IEEE transactions on cybernetics, 2023, 53(1): 443-453.
[10] 胡兵兵, 唐嘉辉, 武吉梅, 等. 基于Triple GAN的滚动轴承故障诊断方法研究[J]. 噪声与振动控制, 2021, 41(4): 109-114, 220.
HU B B, TANG J H, WU J M, et al.Study on fault diagnosis method of rolling bearings based on Triple GAN[J]. Noise and vibration control, 2021, 41(4): 109-114, 220.
[11] XU F, PAN Z C, XIA R.E-commerce product review sentiment classification based on a naive Bayes continuous learning framework[J]. Information processing & management, 2020, 57(5): 102221.
[12] ZHANG C, LIU Z P, ZHANG L.Wind turbine blade bearing fault detection with Bayesian and adaptive kalman augmented lagrangian algorithm[J]. Renewable energy, 2022, 199: 1016-1023.
[13] 张露江, 张利, 杨要伟, 等. 基于改进贝叶斯网络的风机齿轮箱自动诊断策略研究[J]. 电力系统保护与控制, 2019, 47(19): 145-151.
ZHANG L J, ZHANG L, YANG Y W, et al.Research on automatic diagnosis strategy of wind turbine gearbox based on improved Bayesian network[J]. Power system protection and control, 2019, 47(19): 145-151.
[14] JIANG R, YU J, MAKIS V.Optimal Bayesian estimation and control scheme for gear shaft fault detection[J]. Computers & industrial engineering, 2012, 63(4): 754-762.
[15] TAO L F, SUN L L, WU Y D, et al.Multi-signal fusion diagnosis of gearbox based on minimum Bayesian risk reclassification and adaptive weighting[J]. Measurement, 2022, 187: 110358.
[16] 常淼, 沈艳霞. 基于贝叶斯优化CNN的风电轴承故障诊断策略[J]. 噪声与振动控制, 2021, 41(6): 77-83.
CHANG M, SHEN Y X.Fault diagnosis strategy of wind turbine bearings based on Bayesian optimized CNN[J]. Noise and vibration control, 2021, 41(6): 77-83.
[17] WANG X P, LING B W.Length reduction of singular spectrum analysis with guarantee exact perfect reconstruction via block sliding approach[J]. IEEE access, 2020, 8: 170311-170321.
[18] SHAO S Y, MCALEER S, YAN R Q, et al.Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE transactions on industrial informatics, 2019, 15(4): 2446-2455.
[19] ZHAO R, WANG D Z, YAN R Q, et al.Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE transactions on industrial electronics, 2018, 65(2): 1539-1548.
[20] 闫绘宇, 张超. 基于Transformer和卷积神经网络的齿轮故障诊断方法[J]. 机电工程, 2024, 41(3): 409-417.
YAN H Y, ZHANG C.Gear fault diagnosis method based on Transformer and convolutional neural network[J]. Journal of mechanical & electrical engineering, 2024, 41(3): 409-417.
[21] LI S, JI J C, XU Y D, et al.IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions[J]. Reliability engineering & system safety, 2023, 237: 109387.
PDF(1417 KB)

Accesses

Citation

Detail

Sections
Recommended

/