WIND POWER FORECASTING BASED ON INTERPRETABLE OPTIMAL STACKING MODEL

Qi Huanxing, Zhuo Yixin, Li Ling, Yin Linfei, Qin Yiming, Meng Wenchuan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 559-569.

PDF(1528 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1528 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 559-569. DOI: 10.19912/j.0254-0096.tynxb.2023-2152

WIND POWER FORECASTING BASED ON INTERPRETABLE OPTIMAL STACKING MODEL

  • Qi Huanxing1,2, Zhuo Yixin1, Li Ling1, Yin Linfei3, Qin Yiming1, Meng Wenchuan4
Author information +
History +

Abstract

High accuracy of wind power forecasting is an important support to ensure the balance of the power and load and stable operation of power system. In view of the trial-error and weak interpretative problems of current wind power forecasting algorithms in stack modeling, an interpretable optimal stacking model (IOSM) is proposed in this paper, which is applied to wind power forecasting. Firstly, establish an initial redundant base learner and interpret the feature weights. Further, construct a feature optimization metric that comprehensively measures model performance and computation cost, to optimize and select key features and train them to form optimized base learners. Finally, based on feature optimization metrics,the meta learner is established by the the optimized base learner. As above, the complete IOSM is constructed. The proposed algorithm is applied to typical wind farms in Guangxi. Compared with the optimal single model, the RMSE and MAE indexes of IOSM are reduced by 13.01% and 18.23% respectively. Compared with other mainstream combinatorial algorithms, the RMSE and MAE indexes of IOSM can be decreased by 8.24% and 10.28% respectively, while still reducing 142.38% modeling computation cost at least. The effectiveness and advancement of the proposed algorithm are verified, which provides a new idea and method for interpretability modeling of wind power forecasting.

Key words

wind power forecasting / interpretability / stacking model / feature optimization / ensemble learning

Cite this article

Download Citations
Qi Huanxing, Zhuo Yixin, Li Ling, Yin Linfei, Qin Yiming, Meng Wenchuan. WIND POWER FORECASTING BASED ON INTERPRETABLE OPTIMAL STACKING MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 559-569 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2152

References

[1] 中国可再生能源学会风能专业委员会. 2024年中国风电吊装容量统计简报[J]. 风能, 2025(3): 1-16.
CWEE. Statistical brief report on wind power hoisting capacity in China in2022[J]. Wind energy, 2023(4): 40-56.
[2] WANG N, ZHOU K P, WANG K, et al.Climate change characteristics of coastal wind energy resources in Zhejiang Province based on ERA-interim data[J]. Frontiers in physics, 2021, 9: 720533.
[3] 盛四清, 俞可, 张文朝, 等. 大规模风电并网对送端系统功角稳定的影响研究[J]. 电力系统保护与控制, 2022, 50(6): 82-90.
SHENG S Q, YU K, ZHANG W C, et al.Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J]. Power system protection and control, 2022, 50(6): 82-90.
[4] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040.
XUE Y S, LEI X, XUE F, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[5] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-27.
WANG W S, WANG Z, DONG C, et al.Status and error analysis of short-term forecasting technology of wind power in China[J]. Automation of electric power systems, 2021, 45(1): 17-27.
[6] PENG X S, LI C, JIA S Y, et al.A short-term wind power prediction method based on deep learning and multistage ensemble algorithm[J]. Wind energy, 2022, 25(9): 1610-1625.
[7] ALMUTAIRI A, ALRUMAYH O.An intelligent deep learning based prediction model for wind power generation[J]. Computers and electrical engineering, 2022, 101: 108000.
[8] ZHANG M, LI H B, DENG X.Inferential statistics and machine learning models for short-term wind power forecasting[J]. Energy engineering, 2022, 119(1): 237-252.
[9] SASSER C, YU M L, DELGADO R.Improvement of wind power prediction from meteorological characterization with machine learning models[J]. Renewable energy, 2022, 183: 491-501.
[10] WANG J M, ZHOU Q W, ZHANG X T.Wind power forecasting based on time series ARMA model[J]. IOP conference series: earth and environmental science, 2018, 199: 022015.
[11] 凌立文, 张大斌. 组合预测模型构建方法及其应用研究综述[J]. 统计与决策, 2019, 35(1): 18-23.
LING L W, ZHANG D B.A review of construction and application of combination forecast model[J]. Statistics & decision, 2019, 35(1): 18-23.
[12] TASCIKARAOGLU A, UZUNOGLU M.A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and sustainable energy reviews, 2014, 34: 243-254.
[13] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[14] 李贞, 崔丽艳, 陶颍军, 等. 基于博弈论赋权的光伏功率组合预测模型[J]. 电气技术, 2017(5): 24-29.
LI Z, CUI L Y, TAO Y J, et al.The combined model for pv power forecasting based on combination weighting approach of game theory[J]. Electrical engineering, 2017(5): 24-29
[15] 陈宁, 沙倩, 汤奕, 等. 基于交叉熵理论的风电功率组合预测方法[J]. 中国电机工程学报, 2012, 32(4): 29-34, 22.
CHEN N, SHA Q, TANG Y, et al.A combination method for wind power predication based on cross entropy theory[J]. Proceedings of the CSEE, 2012, 32(4): 29-34, 22.
[16] ZHANG F, GUO Z M, SUN X H, et al.Short-term wind power prediction based on EMD-LSTM combined model[J]. IOP conference series: earth and environmental science, 2020, 514(4): 042003.
[17] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[18] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56, 110.
JIA R, YANG G H, ZHENG H F, et al.Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric power, 2022, 55(5): 47-56, 110.
[19] 张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型[J]. 太阳能学报, 2022, 43(10): 167-176.
ZHANG H T, WEN M, LI J G, et al.Data driven time attention convolution wind power prediction model[J]. Acta energiae solaris sinica, 2022, 43(10): 167-176.
[20] WANG Y R, WANG D C, TANG Y.Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods[J]. IEEE access, 2020, 8: 17071-17079.
[21] 刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268-275.
LIU S, ZHU Y L, ZHANG K, et al.Short-term wind power forecasting based on error correction ARMA-GARCH model[J]. Acta energiae solaris sinica, 2020, 41(10): 268-275.
[22] CHANDRAN V, PATIL C K, MERLINE MANOHARAN A, et al.Wind power forecasting based on time series model using deep machine learning algorithms[J]. Materials today: proceedings, 2021, 47: 115-126.
[23] GANAIE M A, HU M H, MALIK A K, et al.Ensemble deep learning: a review[J]. Engineering applications of artificial intelligence, 2022, 115: 105151.
[24] DONG X B, YU Z W, CAO W M, et al.A survey on ensemble learning[J]. Frontiers of computer science, 2020, 14(2): 241-258.
[25] RIBEIRO M T, SINGH S, GUESTRIN C.“Why should I trust you?”: explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 1135-1144.
[26] LIANG Y, LI S G, YAN C G, et al.Explaining the black-box m odel: a survey of local interpretation methods for deep neural networks[J]. Neurocomputing, 2021, 419: 168-182.
PDF(1528 KB)

Accesses

Citation

Detail

Sections
Recommended

/