RESEARCH ON NONLINEAR FEATURE COMPENSATION CONTROL METHOD FOR PHOTOVOLTAIC GRID-CONNECTED INVERTERS BASED ON DATA REGRESSION

Li Cong, Zhang Qi, Liang Huan, Yang Hui, Sun Xiangdong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 1-9.

PDF(2192 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2192 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2023-2153

RESEARCH ON NONLINEAR FEATURE COMPENSATION CONTROL METHOD FOR PHOTOVOLTAIC GRID-CONNECTED INVERTERS BASED ON DATA REGRESSION

  • Li Cong1, Zhang Qi1,2, Liang Huan2, Yang Hui1, Sun Xiangdong1
Author information +
History +

Abstract

Addressing the impact of nonlinear characteristics such as dead-zones on the power quality of photovoltaic grid-connected inverters, this paper combines data-driven compensation methods with traditional control to investigate a dynamic and static characteristic optimization approach for grid-connected inverters. Firstly, a repetitive controller is utilized as the basis for online data training, elucidating the mechanism and validity of the data source. Secondly, an approximate linear regression method is employed to obtain a data model, reducing the dependence on storage space for data-driven methods, ensuring necessary compensation bandwidth, and solving the feasibility of data application. This model is then applied to the compensation loop of a traditional low-order controller, enabling the system to achieve precise control with sufficient stability margin. Data correlation analysis and experimental results demonstrate the feasibility and effectiveness of this compensation method.

Key words

photovoltaic / dead zones / grid-connected inverter / nonlinear characteristics / data-driven / online training

Cite this article

Download Citations
Li Cong, Zhang Qi, Liang Huan, Yang Hui, Sun Xiangdong. RESEARCH ON NONLINEAR FEATURE COMPENSATION CONTROL METHOD FOR PHOTOVOLTAIC GRID-CONNECTED INVERTERS BASED ON DATA REGRESSION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2153

References

[1] 赵铁英, 高宁, 杨杰, 等. 基于PI控制器有源阻尼的并网逆变器自适应改进策略[J]. 太阳能学报, 2023, 44(5): 152-161.
ZHAO T Y, GAO N, YANG J, et al.Adaptive improvement strategy for grid-connected inverter based on active damping of pi controllers[J]. Acta energiae solaris sinica, 2023, 44(5): 152-161.
[2] 杨兴武, 王楠楠, 王毅, 等. 基于阻抗分析的LCL型并网逆变器相角补偿控制[J]. 太阳能学报, 2020, 41(5): 312-318.
YANG X W, WANG N N, WANG Y, et al.Phase-angle compensation control of LCL-type grid-connected inverter based on impendance analysis[J]. Acta energiae solaris sinica, 2020, 41(5): 312-318.
[3] SAFAMEHR H, NAJAFABADI T A, SALMASI F R.Adaptive control of grid-connected inverters with nonlinear LC filters[J]. IEEE transactions on power electronics, 2023, 38(2): 1562-1570.
[4] 罗辞勇, 王英豪, 王卫耀, 等. 单相特定谐波消除脉宽调制高频逆变器的死区补偿策略[J]. 电工技术学报, 2017, 32(14): 155-164.
LUO C Y, WANG Y H, WANG W Y, et al.Study of dead-time compensation strategy in selective harmonic elimination PWM inverter[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 155-164.
[5] WANG D F, WANG M Y, SHEN Y L, et al.Online feedback dead time compensation strategy for three-level T-type inverters[J]. IEEE transactions on industrial electronics, 2020, 67(9): 7260-7268.
[6] SHEN Z W, JIANG D.Dead-time effect compensation method based on current ripple prediction for voltage-source inverters[J]. IEEE transactions on power electronics, 2019, 34(1): 971-983.
[7] SEYYEDZADEH S M, SHOULAIE A.Accurate modeling of the nonlinear characteristic of a voltage source inverter for better performance in near zero currents[J]. IEEE transactions on industrial electronics, 2019, 66(1): 71-78.
[8] SHANG C Y, YANG M, LONG J, et al.An accurate VSI nonlinearity modeling and compensation method accounting for DC-link voltage variation based on LUT[J]. IEEE transactions on industrial electronics, 2022, 69(9): 8645-8655.
[9] PELLEGRINO G, BOJOI R I, GUGLIELMI P, et al.Accurate inverter error compensation and related self-commissioning scheme in sensorless induction motor drives[J]. IEEE transactions on industry applications, 2010, 46(5): 1970-1978.
[10] TANG Z Y, AKIN B.Suppression of dead-time distortion through revised repetitive controller in PMSM drives[J]. IEEE transactions on energy conversion, 2017, 32(3): 918-930.
[11] BEN-BRAHIM L.On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive[J]. IEEE transactions on industrial electronics, 2004, 51(5): 1113-1117.
[12] 解宝, 周林, 马卫, 等. 光伏并网逆变器的高增益数字PI控制器设计[J]. 太阳能学报, 2019, 40(9): 2586-2593.
XIE B, ZHOU L, MA W, et al.Design of high gain digital PI controller for PV grid-connected inverter[J]. Acta energiae solaris sinica, 2019, 40(9): 2586-2593.
[13] LIN B W, PENG L, LIU X M.Selective pole placement and cancellation for proportional-resonant control design used in voltage source inverter[J]. IEEE transactions on power electronics, 2022, 37(8): 8921-8934.
[14] KIM S Y, LEE W, RHO M S, et al.Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives[J]. IEEE transactions on industrial electronics, 2010, 57(5): 1609-1614.
[15] 韩坤, 孙晓, 刘秉, 等. 一种永磁同步电机矢量控制SVPWM死区效应在线补偿方法[J]. 中国电机工程学报, 2018, 38(2): 620-627, 692.
HAN K, SUN X, LIU B, et al.Dead-time on-line compensation scheme of SVPWM for permanent magnet synchronous motor drive system with vector control[J]. Proceedings of the CSEE, 2018, 38(2): 620-627, 692.
[16] YE J, LIU L G, XU J B, et al.Frequency adaptive proportional-repetitive control for grid-connected inverters[J]. IEEE transactions on industrial electronics, 2021, 68(9): 7965-7974.
[17] XIE C, ZHAO X, SAVAGHEBI M, et al.Multirate fractional-order repetitive control of shunt active power filter suitable for microgrid applications[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(2): 809-819.
[18] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器基于有限集模型预测控制的新型谐波抑制策略[J]. 太阳能学报, 2022, 43(4): 184-190.
HONG J F, ZHANG X, CAO R X, et al.Novel harmonic suppression strategy for three-level grid-connected inverter based on finite control set model predictive control[J]. Acta energiae solaris sinica, 2022, 43(4): 184-190.
[19] MORA A, CARDENAS-DOBSON R, AGUILERA R P, et al.Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-level NPC converters[J]. IEEE transactions on power electronics, 2019, 34(12): 12464-12475.
[20] NOVAK M, XIE H T, DRAGICEVIC T, et al.Optimal cost function parameter design in predictive torque control (PTC) using artificial neural networks (ANN)[J]. IEEE transactions on industrial electronics, 2021, 68(8): 7309-7319.
[21] ZHANG X G, CHENG Y, ZHAO Z H, et al.Optimized model predictive control with dead-time voltage vector for PMSM drives[J]. IEEE transactions on power electronics, 2021, 36(3): 3149-3158.
[22] WU Z Q, DING K, YANG Z J, et al.Analytical prediction and minimization of deadtime-related harmonics in permanent magnet synchronous motor[J]. IEEE transactions on industrial electronics, 2021, 68(9): 7736-7746.
[23] 江法洋, 郑丽君, 宋建成, 等. LCL型并网逆变器重复双闭环控制方法[J]. 中国电机工程学报, 2017, 37(10): 2944-2954.
JIANG F Y, ZHENG L J, SONG J C, et al.Repetitive-based dual closed-loop control approach for grid-connected inverters with LCL filters[J]. Proceedings of the CSEE, 2017, 37(10): 2944-2954.
[24] ZHAO Q S, YE Y Q.A PIMR-type repetitive control for a grid-tied inverter: structure, analysis, and design[J]. IEEE transactions on power electronics, 2018, 33(3): 2730-2739.
[25] BENESTY J, CHEN J, HUANG Y.On the importance of the pearson correlation coefficient in noise reduction[J]. IEEE transactions on audio speech and language processing, 2008, 16(4):757-765.
[26] BISHOP C M.Pattern recognition and machine learning[M]. New York: Springer, 2006: 46-48.
PDF(2192 KB)

Accesses

Citation

Detail

Sections
Recommended

/