VARIABLE FREQUENCY ZERO VOLTAGE SWITCHING CONTROL STRATEGY FOR FOUR-SWITCH BUCK-BOOST CONVERTER

Liu Shuxi, Deng Ruixiang, Guo Qiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 210-219.

PDF(2313 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2313 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 210-219. DOI: 10.19912/j.0254-0096.tynxb.2023-2165

VARIABLE FREQUENCY ZERO VOLTAGE SWITCHING CONTROL STRATEGY FOR FOUR-SWITCH BUCK-BOOST CONVERTER

  • Liu Shuxi, Deng Ruixiang, Guo Qiang
Author information +
History +

Abstract

The FSBB converter to achieve high efficiency, need by reducing the inductor current root mean square (RMS) and the conduction loss of power devices. It is found that the RMS of the inductor current can reach the minimum under the condition of light load, but can not be maintained under the condition of heavy load. For this, put forward a kind of FSBB converter low inductor current RMS control strategy, in order to satisfy the demands of overloading by a variable frequency ZVS control. At the same time, considering inductor current rate of similar input and output voltage is small, can optimize the selection of the time to limit variable frequency range that reduce the difficulty of the hardware design.An experimental prototype with an input voltage of 10-40 V and an output voltage of 15-35 V has been developed in the laboratory, and the feasibility and superiority of the proposed control strategy have been verified by experiments.

Key words

DC-DC converters / zero voltage switching / digital control system / four-switch Buck-Boost converter / quadrilateral inductor current

Cite this article

Download Citations
Liu Shuxi, Deng Ruixiang, Guo Qiang. VARIABLE FREQUENCY ZERO VOLTAGE SWITCHING CONTROL STRATEGY FOR FOUR-SWITCH BUCK-BOOST CONVERTER[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 210-219 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2165

References

[1] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[2] 申泽渊, 赵海波, 李伟康, 等. 面向偏远地区低碳发展的风-光-沼-储综合能源微网多目标规划方法[J]. 太阳能学报, 2023, 44(7): 71-79.
SHEN Z Y, ZHAO H B, LI W K, et al.Multi-objective optimization method for low-carbon development of wind-solar-biogas-storage integrated energy microgrids in remote regions[J]. Acta energiae solaris sinica, 2023, 44(7): 71-79.
[3] HAEGEL N M, KURTZ S R.Global progress toward renewable electricity: tracking the role of solar[J]. IEEE journal of photovoltaics, 2021, 11(6): 1335-1342.
[4] 张文伟, 王维庆, 王海云, 等. 考虑碳捕集技术的风光-富氧燃煤发电系统容量优化配置[J]. 电力系统自动化, 2023, 47(13): 176-189.
ZHANG W W, WANG W Q, WANG H Y, et al.Optimal capacity configuration for wind power-photovoltaic and oxygen-enriched coal-fired power generation system considering carbon capture technology[J]. Automation of electric power systems, 2023, 47(13): 176-189.
[5] CHEN X, PISE A A, ELMES J, et al.Ultra-highly efficient low-power bidirectional cascaded buck-boost converter for portable PV-battery-devices applications[J]. IEEE transactions on industry applications, 2019, 55(4): 3989-4000.
[6] WENG X, XIAO X, HE W B, et al.Comprehensive comparison and analysis of non-inverting buck boost and conventional buck boost converters[J]. The journal of engineering, 2019, 2019(16): 3030-3034.
[7] WAFFLER S, KOLAR J W.A novel low-loss modulation strategy for high-power bidirectional buck+boost converters[J]. IEEE transactions on power electronics, 2009, 24(6): 1589-1599.
[8] 贾磊磊, 孙孝峰, 潘尧, 等. 非反向Buck-Boost变换器的多模式定频双向ZVS控制策略[J]. 太阳能学报, 2022, 43(12): 520-530.
JIA L L, SUN X F, PAN Y, et al.Multimode constant frequency bidirectional ZVS control strategy for noninverting buck-boost converter[J]. Acta energiae solaris sinica, 2022, 43(12): 520-530.
[9] BAI Y N, HU S D, YANG Z, et al.Model predictive control for four-switch buck-boost converter based on tuning-free cost function with smooth mode transition[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(6): 6607-6618.
[10] GUO Z Q, MAO T H.Efficiency optimization and control strategy of four-switch buck-boost converter for wide conversion ratio[J]. IEEE transactions on power electronics, 2023, 38(9): 10702-10715.
[11] 吴岩, 王玮, 曾国宏, 等. 四开关Buck-Boost变换器的多模式模型预测控制策略[J]. 电工技术学报, 2022, 37(10): 2572-2583.
WU Y, WANG W, ZENG G H, et al.Multi-mode model predictive control strategy for the four-switch buck-boost converter[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2572-2583.
[12] LI X, LIU Y S, XUE Y S.Four-switch buck-boost converter based on model predictive control with smooth mode transition capability[J]. IEEE transactions on industrial electronics, 2021, 68(10): 9058-9069.
[13] 方天治, 王愿, 张惠丽, 等. 四管Buck-Boost变换器的改进型三模式变频软开关控制策略[J]. 电工技术学报, 2021, 36(21): 4544-4557.
FANG T Z, WANG Y, ZHANG H L, et al.An improved three-mode variable frequency control strategy based on four-switch buck-boost converter[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4544-4557.
[14] WENG X, ZHAO Z M, CHEN K N, et al.A nonlinear control method for bumpless mode transition in noninverting buck-boost converter[J]. IEEE transactions on power electronics, 2021, 36(2): 2166-2178.
[15] LIU F M, XU J P, CHEN Z G, et al.A multi-frequency PCCM ZVS modulation scheme for optimizing overall efficiency of four-switch buck-boost converter with wide input and output voltage ranges[J]. IEEE transactions on industrial electronics, 2023, 70(12): 12431-12441.
[16] WEN Z L, TANG W M, XU D G.Quasi-peak current control strategy for four-switch buck-boost converter[J]. IEEE transactions on power electronics, 2023, 38(10): 12607-12619.
[17] LIU F M, XU J P, CHEN Z G, et al.A constant frequency ZVS modulation scheme for four-switch buck-boost converter with wide input and output voltage ranges and reduced inductor current[J]. IEEE transactions on industrial electronics, 2022, 70(5): 4931-4941.
[18] ZHOU Z J, LI H Y, WU X K.A constant frequency ZVS control system for the four-switch buck-boost DC-DC converter with reduced inductor current[J]. IEEE transactions on power electronics, 2018, 34(7): 5996-6003.
[19] TIAN L, WU X K, JIANG C R, et al.A simplified real-time digital control scheme for ZVS four-switch buck-boost with low inductor current[J]. IEEE transactions on industrial electronics, 2021, 69(8): 7920-7929.
[20] LIU Q, QIAN Q S, ZHENG M, et al.An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy[J]. IEEE transactions on power electronics, 2021, 36(9): 10827-10841.
[21] FANG J, RUAN X B, HUANG X Z, et al.A PWM plus phase-shift control for four-switch buck-boost converter to achieve ZVS in full input voltage and load range[J]. IEEE transactions on industrial electronics, 2021, 69(12): 12698-12709.
[22] 贾磊磊, 孙孝峰, 潘尧, 等. 非反向Buck-Boost变换器的三段式ZVS控制策略[J]. 太阳能学报, 2023, 44(11): 110-119.
JIA L L, SUN X F, PAN Y, et al.Three-segment ZVS control strategy for noninverting buck-boost converter[J]. Acta energiae solaris sinica, 2023, 44(11): 110-119.
[23] 李山, 宋立风, 章治国, 等. 基于变拓扑的超宽输入范围直流变换器及调制策略[J]. 电工技术学报, 2019, 34(2): 326-336.
LI S, SONG L F, ZHANG Z G, et al.Wide input range DC converter based on variable topology and its modulation strategy[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 326-336.
PDF(2313 KB)

Accesses

Citation

Detail

Sections
Recommended

/