OPTIMIZATION STUDY ON OPERATION OF HOUSEHOLD HYDROGEN ENERGY SYSTEM CONSIDERING THERMAL LOAD FLEXIBILITY

Yuan Tiejiang, Zeng Jing, Zhang Mingyang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 29-40.

PDF(3001 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3001 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (7) : 29-40. DOI: 10.19912/j.0254-0096.tynxb.2024-0007

OPTIMIZATION STUDY ON OPERATION OF HOUSEHOLD HYDROGEN ENERGY SYSTEM CONSIDERING THERMAL LOAD FLEXIBILITY

  • Yuan Tiejiang, Zeng Jing, Zhang Mingyang
Author information +
History +

Abstract

Aiming at the challenge of the random and intermittent characteristics of wind power/photovoltaic output to the reliability of combined heat and power supply of household hydrogen energy system, an optimization strategy of combined heat and power supply of household hydrogen energy system based on flexible relaxation operation constraint of heat load is proposed. Firstly, the infrastructure of household hydrogen energy system including different modules is built, and the operation principle of the system is described in detail. Secondly, the mathematical model of the key links in the system is established, and the range of the average hydrogen/heat ratio of the electrolytic cell and the electric/heat ratio of the fuel cell at different temperatures are determined. Then, in order to take consider the user's comfort and the flexibility of the heat load, the heat load demand of the household hydrogen energy system is adjusted according to the thermal sensation average scale prediction index. Finally, considering the capacity limitation of hydrogen storage tank, the electric/thermal power of hydrogen energy equipment and the flexible thermal energy demand of user side, the optimal operation model of household hydrogen energy system is established with the goal of minimizing the total investment cost and the abandonment rate of new energy. The simulation results show that the introduction of flexible heat load for operation adjustment not only enhances the consumption capacity of renewable energy, but also significantly reduces the operating cost of the system.

Key words

hydrogen energy system / hydrogen fuel cell / flexible load / user comfort / operation optimization / combined heat and power supply

Cite this article

Download Citations
Yuan Tiejiang, Zeng Jing, Zhang Mingyang. OPTIMIZATION STUDY ON OPERATION OF HOUSEHOLD HYDROGEN ENERGY SYSTEM CONSIDERING THERMAL LOAD FLEXIBILITY[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 29-40 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0007

References

[1] GUELPA E, BISCHI A, VERDA V, et al.Towards future infrastructures for sustainable multi-energy systems: a review[J]. Energy, 2019, 184: 2-21.
[2] MAZLOOMI K, GOMES C.Hydrogen as an energy carrier: prospects and challenges[J]. Renewable and sustainable energy reviews, 2012, 16(5): 3024-3033.
[3] SHAW S, PETEVES E.Exploiting synergies in European wind and hydrogen sectors: a cost-benefit assessment[J]. International journal of hydrogen energy, 2008, 33(13): 3249-3263.
[4] GONZÁLEZ A, MCKEOGH E, GALLACHÓIR B Ó. The role of hydrogen in high wind energy penetration electricity systems: the Irish case[J]. Renewable energy, 2004, 29(4): 471-489.
[5] KRAJAČIĆ G, MARTINS R, BUSUTTIL A, et al. Hydrogen as an energy vector in the islands' energy supply[J]. International journal of hydrogen energy, 2008, 33(4): 1091-1103.
[6] KORPAS B, MAGNUS. Distributed energy systems with wind power and energy storage[D]. Norway: NTNU, 2004.
[7] MEHRJERDI H.Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units[J]. Renewable energy, 2020, 156: 183-192.
[8] FIRTINA-ERTIS I, ACAR C, ERTURK E.Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house[J]. Applied energy, 2020, 274: 115244.
[9] HASSAN Q.Optimisation of solar-hydrogen power system for household applications[J]. International journal of hydrogen energy, 2020, 45(58): 33111-33127.
[10] PURANEN P, KOSONEN A, AHOLA J.Technical feasibility evaluation of a solar PV based off-grid domestic energy system with battery and hydrogen energy storage in northern climates[J]. Solar energy, 2021, 213: 246-259.
[11] PARRA D, WALKER G S, GILLOTT M.Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling[J]. Sustainable cities and society, 2014, 10: 1-10.
[12] NAVAS S J, CABELLO GONZÁLEZ G M, PINO F J. Hybrid power-heat microgrid solution using hydrogen as an energy vector for residential houses in Spain. A case study[J]. Energy conversion and management, 2022, 263: 115724.
[13] SINGH A, BAREDAR P, GUPTA B.Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building[J]. Energy conversion and management, 2017, 145: 398-414.
[14] LACKO R, DROBNIČ B, SEKAVČNIK M, et al. Hydrogen energy system with renewables for isolated households: the optimal system design, numerical analysis and experimental evaluation[J]. Energy and buildings, 2014, 80: 106-113.
[15] 邹晨露, 崔雪, 周斌, 等. 低碳环境下计及柔性负荷和电锅炉的电热联合系统优化调度[J]. 电测与仪表, 2019, 56(18): 34-40, 56.
ZOU C L, CUI X, ZHOU B, et al.Optimal dispatch of combined heat and power system considering flexible load and electric boiler under carbon trading environment[J]. Electrical measurement & instrumentation, 2019, 56(18): 34-40, 56.
[16] 蒋诗百, 杨丽娜, 刘权, 等. 考虑柔性负荷的能源互联型园区综合能源优化研究[J]. 电测与仪表, 2020, 57(16): 83-88.
JIANG S B, YANG L N, LIU Q, et al.Research on comprehensive energy optimization of energy interconnected parks considering flexible load[J]. Electrical measurement & instrumentation, 2020, 57(16): 83-88.
[17] 刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850.
LIU R H, LI Z L, YANG X, et al.Optimal dispatch of community integrated energy system considering user-side flexible load[J]. Acta energiae solaris sinica, 2019, 40(10): 2842-2850.
[18] 刘承锡, 曾冠维, 廖敏芳, 等. 大容量电解槽动态仿真建模及其快速频率响应分析[J]. 电网技术, 2023, 47(11): 4638-4648.
LIU C X, ZENG G W, LIAO M F, et al.Modeling of large-scale electrolyzers for real-time simulation and analysis of its fast frequency response[J]. Power system technology, 2023, 47(11): 4638-4648.
[19] 李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58(1): 9-21.
LI Q, ZOU X L, PU Y C, et al.Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21.
[20] 阳洋, 李奇, 蒲雨辰, 等. 考虑电动汽车充电方式的热-电-氢耦合孤岛综合能源系统优化配置[J]. 电网技术, 2022, 46(10): 3869-3880.
YANG Y, LI Q, PU Y C, et al.Optimal configuration of CHHP island IES considering different charging modes of electric vehicles[J]. Power system technology, 2022, 46(10): 3869-3880.
[21] 杨洋. 基于氢能的电热气耦合微网容量优化配置研究[D]. 大连: 大连理工大学, 2022.
YANG Y.Research on optimal capacity allocation of electrothermal gas coupled microgrid based on hydrogen Energy[D]. Dalian: Dalian University of Technology, 2022.
[22] PENG D D, FOWLER M, ELKAMEL A, et al.Enabling utility-scale electrical energy storage by a power-to-gas energy hub and underground storage of hydrogen and natural gas[J]. Journal of natural gas science and engineering, 2016, 35: 1180-1199.
[23] HU Q, LIN J, ZENG Q, et al.Optimal control of a hydrogen microgrid based on an experiment validated P2HH model[J]. IET renewable power generation, 2020, 14(3): 364-371.
[24] 马志侠, 张林鍹, 郑兴, 等. 基于PEMFC-P2G与风光不确定的综合能源系统优化调度[J]. 太阳能学报, 2022, 43(6): 441-447.
MA Z X, ZHANG L X, ZHENG X, et al.Optimal scheduling of integrated energy system based on PEMFC-P2G and inpact of wind power and photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2022, 43(6): 441-447.
[25] 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603-1613, 1857.
SUI Q, MA X, WEI F R, et al.Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613, 1857.
[26] 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46(5): 1692-1704.
DENG J, JIANG F, WANG W Y, et al.Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power system technology, 2022, 46(5): 1692-1704.
[27] EL-SHARKH M Y, TANRIOVEN M, RAHMAN A, et al. A study of cost-optimized operation of a grid-parallel PEM fuel cell power plant[J]. IEEE transactions on power systems, 2006, 21(3): 1104-1114.
[28] 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264.
CUI Y, YAN S, ZHONG W Z, et al.Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power system technology, 2020, 44(11): 4254-4264.
[29] 信博文. 严寒地区高校的建筑采暖系统研究[D]. 乌鲁木齐: 新疆大学, 2020.
XIN B W.Research on building heating system of colleges in severe cold regions[D]. Urumqi: Xinjiang University, 2020.
[30] 郭晓利, 赵莹, 曲楠, 等. 基于满意度的户用型微电网多属性需求响应策略[J]. 太阳能学报, 2021, 42(7): 21-27.
GUO X L, ZHAO Y, QU N, et al.Multi-attribute demand response strategy of household microgrid based on satisfaction[J]. Acta energiae solaris sinica, 2021, 42(7): 21-27.
PDF(3001 KB)

Accesses

Citation

Detail

Sections
Recommended

/