THREE-DIMENSIONAL SPATIAL CORRELATION ANALYSIS OF FLUCTUATING WIND LOADS ON UPPER AND LOWER SURFACES OF LARGE-SPAN FLEXIBLE PHOTOVOLTAIC ARRAYS

Wang Wei, Ke Shitang, Wang Lishan, Ren Hehe, Zhang Chunwei, Tian Wenxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 331-341.

PDF(7270 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7270 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 331-341. DOI: 10.19912/j.0254-0096.tynxb.2024-0008

THREE-DIMENSIONAL SPATIAL CORRELATION ANALYSIS OF FLUCTUATING WIND LOADS ON UPPER AND LOWER SURFACES OF LARGE-SPAN FLEXIBLE PHOTOVOLTAIC ARRAYS

  • Wang Wei1, Ke Shitang1, Wang Lishan2, Ren Hehe1, Zhang Chunwei1, Tian Wenxin3
Author information +
History +

Abstract

Taking the three-span and five-row photovoltaic array of Guodian Investment Jiangsu Yancheng Flexible Photovoltaic Demonstration Base as the research object, the distribution characteristics and correlation of fluctuating wind loads in three-dimensional space were compared and analyzed based on wind tunnel tests, synchronously recording the pressure on the upper and lower surfaces. A regional division model for the correlation of flexible photovoltaic surfaces was established, revealing the variation of fluctuating wind loads in three-dimensional space and the coupling effects between the wind components on flexible photovoltaic surfaces. It is found that the upper edge of the flexible photovoltaic surface along the vertical direction is weakly correlated, while it become strongly correlated on the lower edge. The interference of horizontal cross array significantly affect the correlation of fluctuating wind pressure at the connection area of flexible photovoltaic array panels, and the first row of photovoltaic arrays is most severely affected by inter row interference; The correlation area between the overall resistance coefficient and surface fluctuating wind pressure shows a weak-strong-weak distribution on the flexible photovoltaic surface, and there is a significant coupling effect between the surface resistance and the transverse bending moment. The array interference enhances the coupling area in [0 °, 45 °] and [150 °, 180 °], and weakens the area in [45 °,150 °].

Key words

photovoltaic array / wind tunnel / correlation theory / fluctuating wind load / array interference

Cite this article

Download Citations
Wang Wei, Ke Shitang, Wang Lishan, Ren Hehe, Zhang Chunwei, Tian Wenxin. THREE-DIMENSIONAL SPATIAL CORRELATION ANALYSIS OF FLUCTUATING WIND LOADS ON UPPER AND LOWER SURFACES OF LARGE-SPAN FLEXIBLE PHOTOVOLTAIC ARRAYS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 331-341 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0008

References

[1] OSTFELD A E, ARIAS A C.Flexible photovoltaic power systems: integration opportunities, challenges and advances[J]. Flexible and printed electronics, 2017, 2(1): 013001.
[2] HU Y X, DING S S, CHEN P, et al.Flexible solar-rechargeable energy system[J]. Energy storage materials, 2020, 32: 356-376.
[3] JACKSON N D, GUNDA T.Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States[J]. Applied energy, 2021, 302: 117508.
[4] ZOU T, NIU X B, JI X D, et al.The projection of climate change impact on the fatigue damage of offshore floating photovoltaic structures[J]. Frontiers in marine science, 2023, 10: 1065517.
[5] ABDOLLAHI R.Impact of wind on strength and deformation of solar photovoltaic modules[J]. Environmental science and pollution research, 2021, 28(17): 21589-21598.
[6] GÜRTÜRK M, BENLI H, ERTÜRK N K. Effects of different parameters on energy-exergy and power conversion efficiency of PV modules[J]. Renewable and sustainable energy reviews, 2018, 92: 426-439.
[7] REFFAT R M, EZZAT R.Impacts of design configurations and movements of PV attached to building facades on increasing generated renewable energy[J]. Solar energy, 2023, 252: 50-71.
[8] IRTAZA H, AGARWAL A.CFD simulation of turbulent wind effect on an array of ground-mounted solar PV panels[J]. Journal of the institution of engineers(India): series A, 2018, 99(2): 205-218.
[9] BARBÓN A, BAYÓN-CUELI C, BAYÓN L, et al. A methodology for an optimal design of ground-mounted photovoltaic power plants[J]. Applied energy, 2022, 314: 118881.
[10] 邹琼, 王潮, 曾轩, 等. 平屋顶槽式聚光器风压分布的概率特性研究[J]. 太阳能学报, 2022, 43(12): 144-153.
ZOU Q, WANG C, ZENG X, et al.Study on probability characteristics of wind-pressure distribution of trough concentrator installed on flat roof[J]. Acta energiae solaris sinica, 2022, 43(12): 144-153.
[11] LI J Y, TONG L W, WU J M, et al.Numerical investigation of wind pressure coefficients for photovoltaic arrays mounted on building roofs[J]. KSCE journal of civil engineering, 2019, 23(8): 3606-3615.
[12] 杨瑛, 高青, 刘柱梁, 等. 基于构件形态的高层大跨厂房光伏遮阳设计方法[J]. 太阳能学报, 2024, 45(2): 451-459.
YANG Y, GAO Q, LIU Z L, et al.Design method of photovoltaic shading for high-rise large-span factory based on component-based morphology[J]. Acta energiae solaris sinica, 2024, 45(2): 451-459.
[13] 殷梅子, 邹云峰, 李青婷, 等. 单排跟踪式光伏结构风荷载风洞试验研究[J]. 铁道科学与工程学报, 2020, 17(9): 2354-2362.
YIN M Z, ZOU Y F, LI Q T, et al.Wind tunnel test study on wind load of single row tracking photovoltaic structure[J]. Journal of railway science and engineering, 2020, 17(9): 2354-2362.
[14] BARBÓN A, CARREIRA-FONTAO V, BAYÓN L, et al. Optimal design and cost analysis of single-axis tracking photovoltaic power plants[J]. Renewable energy, 2023, 211: 626-646.
[15] NAZIR C P.Solar energy for traction of high speed rail transportation: a techno-economic analysis[J]. Civil engineering journal, 2019, 5(7): 1566-1576.
[16] 艾国乐, 郝小礼, 刘仙萍, 等. 高速铁路上空安装光伏系统的节能潜力研究[J]. 太阳能学报, 2023, 44(2): 409-417.
AI G L, HAO X L, LIU X P, et al.Energy saving potential research of photovoltaic system installed over high-speed railway[J]. Acta energiae solaris sinica, 2023, 44(2): 409-417.
[17] YEMENICI O, AKSOY M O.An experimental and numerical study of wind effects on a ground-mounted solar panel at different panel tilt angles and wind directions[J]. Journal of wind engineering and industrial aerodynamics, 2021, 213: 104630.
[18] SUÁREZ J L, CADENAS D, RUBIO H, et al. Vortex shedding dynamics behind a single solar PV panel over a range of tilt angles in uniform flow[J]. Fluids, 2022, 7(10): 322.
[19] 全勇, 吴建高, 陈艳, 等. 风向角和倾角对光伏阵列风荷载的影响[J]. 太阳能学报, 2024, 45(1): 25-31.
QUAN Y, WU J G, CHEN Y, et al.Influence of wind direction and inclination angle on wind load of photovoltaic arrays[J]. Acta energiae solaris sinica, 2024, 45(1): 25-31.
[20] 陈权, 牛华伟, 李红星, 等. 基于气弹模型风洞试验的柔性光伏支架气动稳定性及干扰效应研究[J]. 建筑结构学报, 2023, 44(11): 153-161.
CHEN Q, NIU H W, LI H X, et al.Aerodynamic stability and interference effect on a flexible photovoltaic based on wind tunnel test with aeroelastic model[J]. Journal of building structures, 2023, 44(11): 153-161.
[21] KIM Y C, TAMURA Y, YOSHIDA A, et al.Experimental investigation of aerodynamic vibrations of solar wing system[J]. Advances in structural engineering, 2018, 21(15): 2217-2226.
[22] LI W J, KE S T, CAI Z B, et al.Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind[J]. Solar energy, 2023, 264: 112000.
[23] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU H, XU H W, ZHANG Y L, et al.Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74.
[24] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[25] 李寿英, 马杰, 刘佳琪, 等. 柔性光伏系统颤振性能的节段模型试验研究[J]. 土木工程学报, 2024, 57(2): 25-34.
LI S Y, MA J, LIU J Q, et al.Experimental study on flutter performance of flexible photovoltaic system by segmental model test[J]. China civil engineering journal, 2024, 57(2): 25-34.
[26] LIU J Q, LI S Y, LUO J, et al.Experimental study on critical wind velocity of a 33-meter-span flexible photovoltaic support structure and its mitigation[J]. Journal of wind engineering and industrial aerodynamics, 2023, 236: 105355.
[27] HE X H, DING H, JING H Q, et al.Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104275.
[28] 陈卓如. 工程流体力学[M]. 3版. 北京: 高等教育出版社, 2013: 135-137.
CHEN Z R.Engineering fluid mechanics[M]. 3rd ed. Beijing: Higher Education Press, 2013: 135-137.
PDF(7270 KB)

Accesses

Citation

Detail

Sections
Recommended

/