NUMERICAL SIMULATION OF HYDROGEN REFUELING STATIONS LEAKAGE AND DIFFUSION FROM HYDROGEN UNDER VARIOUS EXTERNAL ENVIRONMENTS

Fang Yunhui, Yu Haohua, Zeng Delong, Chen Yu, Ma Jun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 128-137.

PDF(1766 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1766 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 128-137. DOI: 10.19912/j.0254-0096.tynxb.2024-0034

NUMERICAL SIMULATION OF HYDROGEN REFUELING STATIONS LEAKAGE AND DIFFUSION FROM HYDROGEN UNDER VARIOUS EXTERNAL ENVIRONMENTS

  • Fang Yunhui1, Yu Haohua2, Zeng Delong3, Chen Yu1, Ma Jun3
Author information +
History +

Abstract

In order to explore the hydrogen diffusion law after hydrogen refueling station leakage and formulate corresponding protective measures, taking a planned hydrogen refueling station in Ningbo city as the research object, the CFD simulation software Ansys Fluent was used to simulate the hydrogen leakage diffusion under various external environmental conditions. Results indicate that wind has a significant impact on the leakage and diffusion of hydrogen: higher wind speeds correspond to smaller volume of hydrogen cloud formed and faster attainment of steady state. Structural elements such as buildings and equipment can redirect wind and reduce its speed to some extent. In such cases, the volume of formed hydrogen cloud is slightly larger but still smaller than under windless conditions. Hydrogen tends to accumulate at areas such as the junction of the station and the roof, as well as above the hydrogen dispenser. Placement of hydrogen sensors near these locations enables effective leak detection, reducing potential risks at hydrogen refueling station. Based on the constructed model, a layout scheme for hydrogen sensors is proposed, ensuring successful alarms in all studied scenarios. When wind direction is perpendicular to the direction of the leak, the volume of hydrogen cloud formed is small and detection may be relatively challenging, potentially leading to delayed alarms. Hence, it is suggested to increase personnel patrols or deploy additional mobile alarm devices in these areas.

Key words

hydrogen fuel / leakage / wind effect / leak detection / numerical simulation / concentration distribution

Cite this article

Download Citations
Fang Yunhui, Yu Haohua, Zeng Delong, Chen Yu, Ma Jun. NUMERICAL SIMULATION OF HYDROGEN REFUELING STATIONS LEAKAGE AND DIFFUSION FROM HYDROGEN UNDER VARIOUS EXTERNAL ENVIRONMENTS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 128-137 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0034

References

[1] 刘峻, 赵汪, 高学强, 等. 全球加氢站产业、技术及标准进展综述[J]. 太阳能学报, 2022, 43(6): 362-372.
LIU J, ZHAO W, GAO X Q, et al.Review on advances in industry, technology, and standard of global hydrogen refuelling stations[J]. Acta energiae solaris sinica, 2022, 43(6): 362-372.
[2] ZHOU Y, LI R Y, LV Z X, et al.Green hydrogen: a promising way to the carbon-free society[J]. Chinese journal of chemical engineering, 2022, 43: 2-13.
[3] MORADI R, GROTH K.Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. 2019, 44(23): 12254-12269.
[4] SALEHI F, ABBASSI R, ASADNIA M, et al.Overview of safety practices in sustainable hydrogen economy-An Australian perspective[J]. International journal of hydrogen energy, 2022, 47(81): 34689-34703.
[5] 郑津洋, 开方明, 刘仲强, 等. 高压氢气储运设备及其风险评价[J]. 太阳能学报, 2006, 27(11): 1168-1174.
ZHENG J Y, KAI F M, LIU Z Q, et al.Risk assessment and control of high pressure hydrogen equipment[J]. Acta energiae solaris sinica, 2006, 27(11): 1168-1174.
[6] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[7] MIDILLI A, AY M, DINCER I, et al.On hydrogen and hydrogen energy strategies I: current status and needs[J]. Renewable and sustainable energy reviews, 2005, 9(3): 255-271.
[8] QIAN J Y, LI X J, GAO Z X, et al.A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International journal of hydrogen energy, 2020, 45(28): 14428-14439.
[9] LIU S, HE R.Optimized model-based diagnosis approach for hydrogen leakage in hydrogen supply system of fuel cell truck[J]. International journal of energy research, 2022, 46(12): 17720-17725.
[10] HE X, KONG D P, YU X R, et al.Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks[J]. International journal of hydrogen energy, 2024, 51: 702-712.
[11] 王旭, 丁珏, 杨小权, 等. 高压储氢系统泄漏爆炸事故的动力学演化[J]. 中国安全生产科学技术, 2023, 19(3): 150-156.
WANG X, DING J, YANG X Q, et al.Dynamic evolution of leakage and explosion accident in high pressure hydrogen storage system[J]. Journal of safety science and technology, 2023, 19(3): 150-156.
[12] 张静, 黄玉玺, 张巍, 等. 车库燃料汽车氢气泄漏模拟与分析[J]. 太原理工大学学报, 2022, 53(6): 1068-1075.
ZHANG J, HUANG Y X, ZHANG W, et al.Simulation and analysis of hydrogen leakage in garage fuel vehicles[J]. Journal of Taiyuan University of Technology, 2022, 53(6): 1068-1075.
[13] 何静, 刘宏波, 魏列, 等. 车载储氢瓶泄漏及车库内通风方式研究[J]. 中国安全生产科学技术, 2022, 18(9): 181-188.
HE J, LIU H B, WEI L, et al.Study on leakage of on-vehicle hydrogen storage cylinder and ventilation mode in garage[J]. Journal of safety science and technology, 2022, 18(9): 181-188.
[14] 姚璐峤, 张小军, 王凯, 等. BP神经网络辅助的氢气泄漏检测方法研究[J]. 重庆理工大学学报(自然科学), 2022, 36(3): 289-294.
YAO L J, ZHANG X J, WANG K, et al.Hydrogen leakage detection method by using BP neural network[J]. Journal of Chongqing University of Technology (natural science), 2022, 36(3): 289-294.
[15] BIRCH A D, HUGHES D J, SWAFFIELD F.Velocity decay of high pressure jets[J]. Combustion science and technology, 1987, 52(1/2/3): 161-171.
[16] BIRCH A D, BROWN D R, DODSON M G, et al.The structure and concentration decay of high pressure jets of natural gas[J]. Combustion science and technology, 1984, 36(5/6): 249-261.
[17] EWAN B C R, MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combustion science and technology, 1986, 45(5/6): 275-288.
[18] YÜCEIL K B, ÖTÜGEN M V. Scaling parameters for underexpanded supersonic jets[J]. Physics of fluids, 2002, 14(12): 4206-4215.
[19] 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015.
LI X F.Study on accidental hydrogen leakage and diffusion in hydrogen storage system[D]. Beijing: Tsinghua University, 2015.
[20] 黄雪驰, 马贵阳, 杨奇睿, 等. 天然气管道非稳态泄漏扩散的数值模拟[J]. 安全与环境学报, 2017, 17(1): 183-188.
HUANG X C, MA G Y, YANG Q R, et al.Numerical simulation of unsteady leakage and diffusion of the gas pipeline[J]. Journal of safety and environment, 2017, 17(1): 183-188.
[21] YANG F Y, WANG T Z, DENG X T, et al.Review on hydrogen safety issues: incident statistics, hydrogen diffusion, and detonation process[J]. International journal of hydrogen energy, 2021, 46(61): 31467-31488.
[22] 薄柯, 黄强华, 王骞, 等. 塑料内胆材料高压氢渗透实验装置研究[J]. 太阳能学报, 2023, 44(12): 487-491.
BO K, HUANG Q H, WANG Q, et al.Research of high-pressure hydrogen permeation testing apparatus for plastic liner materials[J]. Acta energiae solaris sinica, 2023, 44(12): 487-491.
[23] TOLIAS I C, GIANNISSI S G, VENETSANOS A G, et al.Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications[J]. International journal of hydrogen energy, 2019, 44(17): 9050-9062.
[24] SHU Z Y, LIANG W Q, ZHENG X H, et al.Dispersion characteristics of hydrogen leakage: comparing the prediction model with the experiment[J]. Energy, 2021, 236: 121420.
PDF(1766 KB)

Accesses

Citation

Detail

Sections
Recommended

/