ACTIVE POWER ALLOCATION METHOD FOR DOUBLY FED WIND FARMS CONSIDERING FATIGUE LOAD

Wang Hanbo, Liu Yingming, Wang Xiaodong, Guo Guoxian, Wang Liming, Jing Hejun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 465-473.

PDF(1931 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1931 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 465-473. DOI: 10.19912/j.0254-0096.tynxb.2024-0057

ACTIVE POWER ALLOCATION METHOD FOR DOUBLY FED WIND FARMS CONSIDERING FATIGUE LOAD

  • Wang Hanbo1, Liu Yingming1, Wang Xiaodong1, Guo Guoxian1, Wang Liming1, Jing Hejun2
Author information +
History +

Abstract

The wind farm composed of doubly fed induction generator (DFIG-VSG) based on virtual synchronous generator control strategy (VSG) will exacerbate the main shaft (Ms) fatigue load of each DFIG-VSG in the wind farm when responding to changes in the grid power command value (Pgrid). The central controller of the wind farm can reasonably allocate Pgrid to each DFIG-VSG in, which can reduce the Ms fatigue load of each DFIG-VSG in the wind farm while responding to Pgrid changes. A wind farm active power allocation method that takes into account main shaft fatigue load is proposed for this purpose. Firstly, construct a discretized equation that quantifies the relationship between the active power command value of a single DFIG-VSG in the field and its main shaft torque (Ms_T). Then, based on this discretization equation, the Ms of each DFIG-VSG minimized as the objective function and active power constraints are based on the operating status of Pgrid and each DFIG-VSG. Finally, based on the fmincon function in the central controller, real-time allocation of active power command values required by each DFIG-VSG is performed. The simulation results have verified the effectiveness and superiority of the proposed allocation method.

Key words

wind farm / virtual synchronous generator / main shaft fatigue load / active power allocation method

Cite this article

Download Citations
Wang Hanbo, Liu Yingming, Wang Xiaodong, Guo Guoxian, Wang Liming, Jing Hejun. ACTIVE POWER ALLOCATION METHOD FOR DOUBLY FED WIND FARMS CONSIDERING FATIGUE LOAD[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 465-473 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0057

References

[1] 蒋东荣, 莫若男, 杨超, 等. 虚拟同步控制下双馈风电机组传动链动态特性分析[J]. 太阳能学报, 2023, 44(8): 412-419.
JIANG D R, MO R N, YANG C, et al.Dynamic characteristics analysis of drive train of doubly-fed wind turbines under virtual synchronous control[J]. Acta energiae solaris sinica, 2023, 44(8): 412-419.
[2] 徐思莹, 王晗, 曹云峰, 等. 稳定边界及多目标约束下自同步电压源双馈风电机组参数整定[J]. 电力系统自动化, 2023, 47(11): 18-28.
XU S Y, WANG H, CAO Y F, et al.Parameter tuning for self-synchronous voltage source doubly-fed wind turbines with stability boundary and multi-objective constraint[J]. Automation of electric power systems, 2023, 47(11): 18-28.
[3] 应有, 孙勇, 杨靖, 等. 大型双馈风电机组电网故障穿越过程载荷特性分析[J]. 电力系统自动化, 2020, 44(12): 131-138.
YING Y, SUN Y, YANG J, et al.Load characteristic analysis of grid fault ride-through process for DFIG based large wind turbine[J]. Automation of electric power systems, 2020, 44(12): 131-138.
[4] 杨伟峰. 风电和储能参与的层次协调频率控制方法研究[D]. 长沙: 湖南大学, 2022.
YANG W F.Research on hierarchical coordinated frequency control method involving wind power and energy storage[D]. Changsha: Hunan University, 2022.
[5] ZHAO H R, WU Q W, GUO Q L, et al.Distributed model predictive control of a wind farm for optimal active power Control PartII: implementation with clustering-based piece-wise affine wind turbine model[J]. IEEE transactions on sustainable energy, 2015, 6(3): 840-849.
[6] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
YAN X W, CUI S, CHANG W F.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
[7] WANG X D, WANG Y W, LIU Y M.Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load[J]. International journal of electrical power & energy systems, 2020, 117: 105696.
[8] LIU Y M, WANG Y W, WANG X D, et al.Optimal active power dispatch for wind farm based on the improved fatigue load sensitivity[J]. 2019, 11(3): 033306.
[9] 李智, 张扬帆, 刘明波, 等. 电压控制型虚拟同步发电机控制特性评估与多机稳定性分析[J]. 太阳能学报, 2023, 44(10): 1-8.
LI Z, ZHANG Y F, LIU M B, et al.Control characteristics evaluation and multiple generator stability analysis of voltage controlled virtual synchronous generators[J]. Acta energiae solaris sinica, 2023, 44(10): 1-8.
[10] 孟浩. 双馈风力发电系统的虚拟同步发电机控制策略研究[D]. 合肥: 合肥工业大学, 2018.
MENG H.Research on control strategy of virtual synchronous generator for doubly-fed wind power generation system[D]. Hefei: Hefei University of Technology, 2018.
[11] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187.
XIE Z, MENG H, ZHANG X, et al.Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of electric power systems, 2018, 42(9): 157-163, 187.
[12] 戚军, 李袁超, 童辉, 等. 基于动态虚拟电流前馈的预同步VSG功率二阶解耦策略[J]. 电网技术, 2020, 44(9): 3556-3565.
QI J, LI Y C, TONG H, et al.Second-order power decoupling control in pre-synchronized VSG based on dynamic virtual current feedforward control[J]. Power system technology, 2020, 44(9): 3556-3565.
[13] 凌禹. 双馈风力发电系统的建模、仿真与控制[M]. 北京: 机械工业出版社, 2017.
LING Y.Modeling, simulation and control of doubly-fed wind power generation system[M]. Beijing: China Machine Press, 2017.
[14] 杨伟峰, 文云峰, 李立, 等. 考虑疲劳载荷的风电场分散式频率响应策略[J]. 电力自动化设备, 2022, 42(4): 55-62.
YANG W F, WEN Y F, LI L, et al.Decentralized frequency response strategy for wind farm considering fatigue load[J]. Electric power automation equipment, 2022, 42(4): 55-62.
[15] WANG Y W, GUO Y F, ZHANG D R, et al.Analysis and mitigation of the drive train fatigue load for wind turbine with inertial control[J]. International journal of electrical power & energy systems, 2022, 136: 107698.
[16] FAN X K, CRISOSTOMI E, THOMOPULOS D, et al.An optimized decentralized power sharing strategy for wind farm de-loading[J]. IEEE transactions on power systems, 2021, 36(1): 136-146.
[17] NERY G A Jr, MARTINS M A F, KALID R. A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty[J]. ISA transactions, 2014, 53(2): 560-567.
[18] 巩敦卫, 季新芳. 融入偏好的区间高维多目标集合进化优化方法[J]. 控制理论与应用, 2013,30(11): 1369-1383.
GONG G W, JI X F.Optimizing interval higher-dimensional multi-objective problems using set-based evolutionary algorithms incorporated with preferences[J]. Control theory & applications, 2013, 30(11): 1369-1383.
[19] WANG H B, LIU Y M, WANG X D, et al.Dynamic synthetic inertial control method of wind turbines considering fatigue load[J]. Frontiers in energy research, 2023, 10: 1067896.
[20] 胡寿松. 自动控制原理[M]. 7版. 北京: 科学出版社, 2019.
HU S S.Principle of automatic control[M]. 7th ed. Beijing: Science Press, 2019.
PDF(1931 KB)

Accesses

Citation

Detail

Sections
Recommended

/