RESEARCH ON CONTROL STRATEGY OF THREE-PHASE INTERLEAVED DC-DC CONVERTER FOR BATTERY ENERGY STORAGE SYSTEM

Chang Yufang, Gao Peng, Luo Guoao, Zhang Chuangchuang, Yan Huaicheng, Huang Wencong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 706-715.

PDF(4700 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4700 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 706-715. DOI: 10.19912/j.0254-0096.tynxb.2024-0076

RESEARCH ON CONTROL STRATEGY OF THREE-PHASE INTERLEAVED DC-DC CONVERTER FOR BATTERY ENERGY STORAGE SYSTEM

  • Chang Yufang1, Gao Peng1, Luo Guoao1, Zhang Chuangchuang1, Yan Huaicheng2, Huang Wencong1
Author information +
History +

Abstract

In response to the issues of voltage fluctuations in the DC bus and significant current ripple at the battery terminal in battery energy storage systems, this paper proposes a voltage and current dual-loop control strategy for the three-phase interleaved parallel bidirectional DC-DC converter of the battery energy storage system. Firstly, a mathematical model of the three-phase interleaved parallel bidirectional DC-DC converter is established. Secondly, a sliding mode control strategy based on a finite-time extended state observer for the voltage outer loop is designed. Through an improved finite-time extended state observer, the total disturbance of the system is estimated and feed it back to the sliding mode controller for compensation, which improves the response speed and disturbance rejection ability of the system. Next, an adaptive PI current sharing and phase shifting control method in the current inner loop is designed, which divides the total current into three equal parts and controls them individually, reducing the amount of current ripple. Finally, a simulation model and experimental platform are built for validation. The results show that the control method proposed in this paper can effectively suppress DC bus voltage fluctuations and reduce current ripple, and improve the disturbance rejection ability and dynamic response performance of the battery energy storage system.

Key words

battery energy storage system / DC-DC converters / sliding mode control / finite-time extended state observer / current sharing and phase shifting

Cite this article

Download Citations
Chang Yufang, Gao Peng, Luo Guoao, Zhang Chuangchuang, Yan Huaicheng, Huang Wencong. RESEARCH ON CONTROL STRATEGY OF THREE-PHASE INTERLEAVED DC-DC CONVERTER FOR BATTERY ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 706-715 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0076

References

[1] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17.
LI X L, GUO L, WANG C S, et al.Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17.
[2] 龚春阳, 林嘉伟, 黄冬梅, 等. 储能系统双向Buck-Boost变换器控制策略研究[J]. 太阳能学报, 2023, 44(2): 229-238.
GONG C Y, LIN J W, HUANG D M, et al.Research on control strategy of bidirectional Buck-Boost converter in energy storage system[J]. Acta energiae solaris sinica, 2023, 44(2): 229-238.
[3] PIRES V F, FOITO D, CORDEIRO A.A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors[J]. IEEE transactions on industry applications, 2018, 54(1): 274-285.
[4] WANG F, WANG Y B, SU B, et al.Three-phase interleaved high step-up bidirectional DC-DC converter[J]. IET power electronics, 2020, 13(12): 2469-2480.
[5] YANG J, CUI H Y, LI S H, et al.Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer[J]. IEEE transactions on circuits and systems I: regular papers, 2018, 65(2): 832-841.
[6] SIRA-RAMIREZ H.Design of P-I controllers for DC-to-DC power supplies via extended linearization[J]. International journal of control, 1990, 51(3): 601-620.
[7] SHAN Y H, HU J F, LI Z L, et al.A model predictive control for renewable energy based AC microgrids without any PID regulators[J]. IEEE transactions on power electronics, 2018, 33(11): 9122-9126.
[8] 杨帆, 田雷, 李浩, 等. 基于混合储能的直流母线电压有限时间无源控制方法[J]. 太阳能学报, 2019, 40(4): 1042-1049.
YANG F, TIAN L, LI H, et al.Finite-time passivity-based control method for DC-bus voltage based on hybrid energy storage system[J]. Acta energiae solaris sinica, 2019, 40(4): 1042-1049.
[9] 薛花, 李海霞, 王育飞. 基于非线性微分平滑方法的分布式光储直流供电系统电压稳定控制方法[J]. 电力系统保护与控制, 2016, 44(18): 46-53.
XUE H, LI H X, WANG Y F.DC bus stabilization control of distributed photovoltaic-energy storage DC generation system based on nonlinear differential flatness method[J]. Power system protection and control, 2016, 44(18): 46-53.
[10] 杨惠, 骆姗, 孙向东, 等. 光伏储能双向DC-DC变换器的自抗扰控制方法研究[J]. 太阳能学报, 2018, 39(5): 1342-1350.
YANG H, LUO S, SUN X D, et al.Research on ADRC method for bidirectional DC-DC converter of solar energy storage system[J]. Acta energiae solaris sinica, 2018, 39(5): 1342-1350.
[11] YIN Y Q, MAO J F, LIU R D.Multivariable-feedback sliding-mode control of bidirectional DC/DC converter in DC microgrid for improved stability with dynamic constant power load[J]. Electronics, 2022, 11(21): 3455.
[12] ZHENG C M, DRAGIČEVIĆ T, ZHANG J S, et al. Composite robust quasi-sliding mode control of DC-DC buck converter with constant power loads[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 1455-1464.
[13] DING S H, ZHENG W X, SUN J L, et al.Second-order sliding-mode controller design and its implementation for buck converters[J]. IEEE transactions on industrial informatics, 2018, 14(5): 1990-2000.
[14] ZHAO Z H, LI S H, YANG J.Continuous finite-time sliding mode control for uncertain nonlinear systems with applications to DC-DC buck converters[J]. Asian journal of control, 2019, 21(1): 312-322.
[15] ZHENG Q L, GAO Z Q.Predictive active disturbance rejection control for processes with time delay[J]. ISA transactions, 2014, 53(4): 873-881.
[16] WANG J X, LI S H, YANG J, et al.Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances[J]. IET control theory & applications, 2015, 9(4): 579-586.
[17] ZHAO D J, YANG D G.Model-free control of quad-rotor vehicle via finite-time convergent extended state observer[J]. International journal of control, automation and systems, 2016, 14(1): 242-254.
[18] 张圆圆, 龚仁喜, 刘剑锋. 三相交错并联DC-DC变换器的模糊高阶滑模控制[J]. 控制理论与应用, 2023, 40(3): 565-573.
ZHANG Y Y, GONG R X, LIU J F.Fuzzy super-twisting sliding mode control for three-phase interleaved parallel DC-DC converter[J]. Control theory & applications, 2023, 40(3): 565-573.
[19] 王冕, 田野, 李铁民, 等. 应用于储能系统的双向DC-DC变换器研究[J]. 电工技术学报, 2013, 28(8): 66-71.
WANG M, TIAN Y, LI T M, et al.Study of bidirectional DC-DC converters applied to energy storage system[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 66-71.
[20] 陆治国, 祝万平, 刘捷丰, 等. 一种新型交错并联双向DC/DC变换器[J]. 中国电机工程学报, 2013, 33(12): 39-46, 184.
LU Z G, ZHU W P, LIU J F, et al.A novel interleaved parallel bidirectional DC/DC converter[J]. Proceedings of the CSEE, 2013, 33(12): 39-46, 184.
[21] JIA Y F, WANG D Z, SUN G F, et al.High-order sliding-mode control strategy for improving robustness of three-phase interleaved bidirectional converter[J]. Sustainability, 2023, 15(12): 9720.
[22] 张细政, 卢张宇, 谭崇茁, 等. 基于指数趋近律的车载复合储能系统全局滑模控制[J]. 控制与决策, 2021, 36(4): 885-892.
ZHANG X Z, LU Z Y, TAN C Z, et al.Global sliding mode control of vehicle-mounted hybrid energy storage system based on exponential reaching law[J]. Control and decision, 2021, 36(4): 885-892.
[23] IOANNOU P A, SUN J.Robust adaptive control[M]. New Jersey: PTR Prentice-Hall, 1996: 75-76.
[24] GAYEN P K, ROY C P, DHARA P K.An improved dynamic performance of bidirectional SEPIC-Zeta converter based battery energy storage system using adaptive sliding mode control technique[J]. Electric power systems research, 2018, 160: 348-361.
PDF(4700 KB)

Accesses

Citation

Detail

Sections
Recommended

/