STUDY ON APPLICABILITY OF FY-4A SATELLITE SURFACE SOLAR RADIATION PRODUCTS IN XINJIANG

Wang Yupeng, He Qianshan, Liu Xin, Liu Qiong, Chen Yonghang, Sun Linlin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 428-439.

PDF(2676 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2676 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 428-439. DOI: 10.19912/j.0254-0096.tynxb.2024-0078

STUDY ON APPLICABILITY OF FY-4A SATELLITE SURFACE SOLAR RADIATION PRODUCTS IN XINJIANG

  • Wang Yupeng1, He Qianshan2, Liu Xin1, Liu Qiong1, Chen Yonghang1, Sun Linlin1
Author information +
History +

Abstract

Based on radiation observation data from Xiaotang, Hetian, and Altai stations with different underlying surface types in Xinjiang, this study evaluates the applicability of FY-4A surface solar radiation products in the region. Combining FY-4A’s CFR and DSD products, the sources of errors are analyzed. Results indicate that, in terms of consistency, FY-4A correlates above 0.8 with ground observation radiation data at all three stations, with Xiaotang station exhibiting the best consistency, followed by Altai, and Hetian showing the least. In terms of errors, FY-4A generally exhibits higher values overall with a characteristic of ‘high values underestimate, low values overestimate’. Its applicability is best at Xiaotang station, followed by Altai, and poorest at Hetian, with mean absolute errors of 93.62 and 135.38 W/m2,respectively. FY-4A’s mean absolute errors at all three stations reaches maximum values in summer (greater than 114.08 W/m2) and minimum values in winter (less than 102.21 W/m2). Compared to 11:00—14:00, errors are larger at 07:00—10:00 and 15:00—18:00 at all three stations. Analyzing error sources, when cloud cover exceeds 80%, the minimum proportion with a relative error greater than 90% is 17.05%. Under clear sky conditions, Hetian station has no dust pixels, while Xiaotang and Altai stations’mean absolute errors for dust pixels increase by 38.20 and 15.02 W/m2 respectively. Under cloudy conditions, Hetian and Altay stations’mean absolute errors for dust pixels increase by 43.43 and 22.37 W/m2 respectively, while Xiaotang station decreases by 80.67 W/m2 due to more than half of its dust pixels being in the optimal range for FY-4A radiation retrieval.

Key words

incident solar radiation / satellite data / surface observation / FY-4A / cloud covers

Cite this article

Download Citations
Wang Yupeng, He Qianshan, Liu Xin, Liu Qiong, Chen Yonghang, Sun Linlin. STUDY ON APPLICABILITY OF FY-4A SATELLITE SURFACE SOLAR RADIATION PRODUCTS IN XINJIANG[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 428-439 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0078

References

[1] 张志清, 陆风, 方翔, 等. FY-4卫星应用和发展[J]. 上海航天, 2017, 34(4): 8-19.
ZHANG Z Q, LU F, FANG X, et al.Application and development of FY-4 meteorological satellite[J]. Aerospace Shanghai, 2017, 34(4): 8-19.
[2] 王飞, 李娜, 苏营, 等. 基于卫星遥感的辐照度时空关联映射与预测建模[J]. 太阳能学报, 2024, 45(3): 1-9.
WANG F, LI N, SU Y, et al.Spatiotemporal correlation mapping and prediction modeling of irradiance based on satellite remote sensing[J]. Acta energiae solaris sinica, 2024, 45(3): 1-9.
[3] WILD M, GILGEN H, ROESCH A, et al.From dimming to brightening: decadal changes in solar radiation at earth’s surface[J]. Science, 2005, 308(5723): 847-850.
[4] LETU H S, YANG K, NAKAJIMA T Y, et al.High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite[J]. Remote sensing of environment, 2020, 239: 111583.
[5] 胡斯勒图, 施建成, 李明, 等. 基于卫星数据的地表下行短波辐射估算: 方法、进展及问题[J]. 中国科学: 地球科学, 2020, 50(7): 887-902.
HU S L T, SHI J C, LI M, et al. A review of the estimation of downward surface shortwave radiation based on satellite data: methods, progress and problems[J]. Scientia sinica (earth sciences), 2020, 50(7): 887-902.
[6] YANG J, ZHANG Z Q, WEI C Y, et al.Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.
[7] LIU X, KANG Y, LIU Q, et al.Evaluation of net shortwave radiation over China with a regional climate model[J]. Climate research, 2020, 80(2): 147-163.
[8] 王传辉, 申彦波, 翟振芳, 等. FY-4A星地面太阳辐射产品检验与订正: 以安徽省为例[J]. 太阳能学报, 2021, 42(9): 159-169.
WANG C H, SHEN Y B, ZHAI Z F, et al.Verifications and corrections of surface solar radiation products from FY-4A satellite: as a case study in anhui province[J]. Acta energiae solaris sinica, 2021, 42(9): 159-169.
[9] 梁进秋, 申彦波, 胡丽琴, 等. FY-4A地表太阳入射辐射产品在山西高原的适用性研究[J]. 气象, 2020, 46(12): 1575-1585.
LIANG J Q, SHEN Y B, HU L Q, et al.Applicability of FY-4A surface solar irradiance products in the Loess Plateau of Shanxi[J]. Meteorological monthly, 2020, 46(12): 1575-1585.
[10] 丁立国, 申彦波, 马勋丹, 等. FY-4A地面太阳辐射产品在贵州高原山区的适用性研究[J]. 高原气象, 2022, 41(4): 1041-1050.
DING L G, SHEN Y B, MA X D, et al.Applicability of the solar radiation products from FY-4A in plateau mountainous areas of Guizhou[J]. Plateau meteorology, 2022, 41(4): 1041-1050.
[11] 陈蔺鸿, 张彦丽, 宋雨钰. FY-4A太阳短波辐射产品在黑河流域的精度分析[J]. 生态学杂志, 2021, 40(1): 292-300.
CHEN L H, ZHANG Y L, SONG Y Y.Accuracy analysis of shortwave solar radiation products derived from FY-4A in the Heihe River Basin[J]. Chinese journal of ecology, 2021, 40(1): 292-300.
[12] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[13] 冯刚, 李卫华, 韩宇, 等. 新疆太阳能资源及区划[J]. 可再生能源, 2010, 28(3): 133-139.
FENG Gang, LI W H, HAN Y, et al.The solar energy resources of Xinjiang and its distribution[J]. Renewable energy resources, 2010, 28(3): 133-139.
[14] PINKER R T, TARPLEY J D, LASZLO I, et al.Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project[J]. Journal of geophysical research: atmospheres, 2003, 108(D22): 8844.
[15] 周洒洒, 何清, 金莉莉, 等. 塔克拉玛干沙漠北缘绿洲-荒漠过渡带辐射特征: 以肖塘为例[J]. 中国沙漠, 2020, 40(4): 43-51.
ZHOU S S, HE Q, JIN L L, et al.Radiation characteristics of the oasis-desert transition zone in the northern margin of the Taklimakan desert: a case study of Xiaotang[J]. Journal of desert research, 2020, 40(4): 43-51.
[16] LONG C N, SHI Y.An automated quality assessment and control algorithm for surface radiation measurements[J]. The open atmospheric science journal, 2008, 2(1): 23-37.
[17] 宋建洋, 郑向东, 程兴宏, 等. 临安与龙凤山辐射数据质量及初步结果比较[J]. 应用气象学报, 201, 24(1): 65-74.
SONG J Y, ZHENG X D, CHENG X H, et al.Quality evaluations and comparisons of radiation data at Lin’an and Longfengshan sations[J]. Journal of applied meteorological science, 201, 24(1): 65-74.
[18] 郑向东, 赵勇. 南极中山站国产地面太阳辐射观测系统运行评估[J]. 应用气象学报, 20, 34(3): 348-361.
ZHENG X D, ZHAO Y.Performance of domestically made surface solar radiation observation system at Zhongshan station, Antarctica[J]. Journal of applied meteorological science, 20, 34(3): 348-361.
[19] GU Y, LIOU K N, LEE W L, et al.Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF[J]. Atmospheric chemistry and physics, 2012, 12(20): 9965-9976.
[20] LIOU K N, GU Y, LEUNG L R, et al.A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada[J]. Atmospheric chemistry and physics, 2013, 13(23): 11709-11721.
[21] 徐丽娜, 申彦波, 李忠, 等. 基于概率密度匹配方法的FY-4A地表入射太阳辐射订正[J]. 高原气象, 2021, 40(4): 932-942.
XU L N, SHEN Y B, LI Z, et al.Correction of FY-4A surface solar irradiance based on probability density function matching method[J]. Plateau meteorology, 2021, 40(4): 932-942.
[22] 鄢俊洁, 郭雪星, 瞿建华, 等. 基于朴素贝叶斯方法的FY-4A/AGRI云检测模型[J]. 自然资源遥感, 20, 34(3): 33-42.
YAN J J, GUO X X, QU J H, et al.An FY-4A / AGRI cloud detection model based on the naive Bayes algorithm[J]. Remote sensing for natural resources, 20, 34(3): 33-42.
[23] 高泽田, 胡秀清, 张小曳, 等. 基于FY-4A卫星遥感数据分析2021年3次沙尘暴特征[J]. 气象科技, 2022, 50(4): 536-544.
GAO Z T, HU X Q, ZHANG X Y, et al.Characteristic analysis of three sand-dust storm process in 2021 based on FY-4A satellite remote sensing data[J]. Meteorological science and technology, 2022, 50(4): 536-544.
PDF(2676 KB)

Accesses

Citation

Detail

Sections
Recommended

/